高二生物的知识点总结【优秀13篇】

在高中的学习生活中,也许你在高一阶段学习目标不是很明确,但进入高二时期,你的学习目标就应该逐步清晰和明朗起来,否则学习就会缺乏动力。它山之石可以攻玉,下面是敬业的小编午夜帮大家收集整理的13篇高二生物的知识点总结。

高二生物的知识点总结 篇1

语句:

1.糖类代谢、蛋白质代谢、脂类代谢的图解参见课本。

2.糖类、脂类和蛋白质之间是可以转化的,并且是有条件的、互相制约着的。

三类营养物质之间相互转化的程度不完全相同,一是转化的数量不同,如糖类可大量转化成脂肪,而脂肪却不能大量转化成糖类;二是转化的成分是有限制的,如糖类不能转化成必需氨基酸;脂类不能转变为氨基酸。

3.正常人血糖含量一般维持在80-100mg/dL范围内;血糖含量高于160mg/dL,就会产生糖尿;血糖降低(50-60mg/dL),出现低血糖症状,低于45mg/dL,出现低血糖晚期症状;多食少动使摄入的物质(如糖类)过多会导致肥胖。

4.消化:淀粉经消化后分解成葡萄糖,脂肪消化成甘油和脂肪酸,蛋白质在消化道内被分解成氨基酸。

5.吸收及运输:葡萄糖被小肠上皮细胞吸收(主动运输),经血液循环运输到全身各处。以甘油和脂肪酸和形式被吸收,大部分再度合成为脂肪,随血液循环运输到全身各组织器官中。以氨基酸的'形式吸收,随血液循环运输到全身各处。

6.糖类没有N元素要转变成氨基酸,进而形成蛋白质,必须获得N元素,就可以通过氨基转换作用形成。蛋白质要转化成糖类、脂类就要去掉N元素,通过脱氨基作用。

7.唾液含唾液淀粉酶消化淀粉;胃液含胃蛋白酶消化蛋白质;胰液含胰淀粉酶、胰麦芽糖酶、胰脂肪酶、胃蛋白酶(消化淀粉、麦芽糖、脂肪、蛋白质);肠液含肠淀粉酶、肠麦芽糖、肠脂肪酶(消化淀粉、麦芽糖、脂肪、蛋白质)。

8.胃吸收:少量水和无机盐;

大肠吸收:少量水和无机盐和部分维生素;

小肠吸收:以上所有加上葡萄糖、氨基酸、脂肪酸、甘油;

胃和大肠都能吸收的是:水和无机盐;

小肠上皮细胞突起形成小肠绒毛,小肠绒毛朝向肠腔一侧的细胞膜有许多小突起称微绒毛微绒毛扩大了吸收面积,有利于营养物质的吸收。

高二生物复习知识点归纳总结 篇2

蛋白质工程:

是指以蛋白质分子的结构规律及其生物功能的关� (基因工程在原则上只能生产自然界已存在的蛋白质)

(1)蛋白质工程崛起的缘由:基因工程只能生产自然界已存在的蛋白质

(2)蛋白质工程的基本原理:它可以根据人的需求来设计蛋白质的结构,又称为第二代的基因工程。

(3)基本途径:从预期的蛋白质功能出发,设计预期的蛋白质结构,推测应有的氨基酸序列,找到相对应的脱氧核苷酸序列(基因)以上是蛋白质工程特有的途径;以下按照基因工程的一般步骤进行。(注意:目的基因只能用人工合成的方法)

(4)设计中的困难:如何推测非编码区以及内含子的脱氧核苷酸序列

高二生物知识点总结 篇3

神经调节:

1、神经调节的结构基础:神经系统

细胞体

神经系统的结构功能单位:神经元树突

突起神经纤维

轴突

神经元在静息时电位表现为外正内负

功能:传递神经冲动

2、神经调节基本方式:反射

反射的结构基础:反射弧

组成:感受器--→传入神经--→神经中枢---→传出神经---→效应器

(分析综合作用)(运动神经末梢+肌肉或腺体)

3、兴奋是指某些组织(神经组织)或细胞感受外界刺激后由相对静止状态变为显著的活跃状态的过程。

4、兴奋在神经纤维上的传导:

神经纤维受到刺激时,内负外正变为内正外负

以电信号的形式沿着神经纤维的传导是双向的;静息时膜内为负,膜外为正(外正内负);兴奋时膜内为正,膜外为负(外负内正),兴奋的传导以膜内传导为标准。

5、兴奋在神经元之间的传递——突触

突触前膜由轴突末梢膨大的突触小体的膜

①突触的结构突触间隙

突触后膜细胞体的膜树突的膜

②突触小体中有突触小泡,突触小泡中有神经递质,神经递质只能由突触前膜释放到突触后膜,使后膜产生兴奋(或抑制)所以是单向传递。(突触前膜→突触后膜,轴突→树突或胞体)

③在突触传导过程中有电信号→化学信号→电信号的过程,所以比神经纤维上的传导速度慢。

6、神经系统的分级调节

①神经中枢位于颅腔中脑(大脑、脑干、小脑)和脊柱椎管内的脊髓,其中大脑皮层的中枢是级中枢,可以调节以下神经中枢活动

②大脑皮层除了对外部世界感知(感觉中枢在大脑皮层)还具有语言、学习、记忆和思维等方面的高级功能

③语言文字是人类进行思维的主要工具,是人类特有的高级功能(在言语区)

(S区→说,H区→听,W区→写,V区→看)

④记忆种类包括瞬时记忆,短期记忆,长期记忆,永久记忆

孟德尔实验成功的原因:

(1)正确选用实验材料:①豌豆是严格自花传粉植物(闭花授粉),自然状态下一般是纯种;②具有易于区分的性状

(2)由一对相对性状到多对相对性状的研究(从简单到复杂)

(3)对实验结果进行统计学分析

(4)严谨的科学设计实验程序:假说—演绎法,即观察分析—提出假说—演绎推理—实验验证。

三、孟德尔豌豆杂交实验

(1)一对相对性状的杂交:

基因分离定律的实质:在减数_成配子过程中,等位基因随同源染色体的分开而分离,分别进入到两个配子中,独立地随配子遗传给后代。

(2)两对相对性状的杂交:

在F2代中:

基因自由组合定律的实质:在减数_程中,同源染色体上的等位基因彼此分离的同时,非同源染色体上的非等位基因自由组合。

生命活动的基础

组成生物体的无机化合物和有机化合物是生命活动的基础。

生命现象的出现

多种化合物只有按一定的方式有机组织起来,才能表现出细胞和生物体的'生命现象。

生物组织还原性糖、脂肪、蛋白质的鉴定

颜色反应:某些化学试剂能够使生物组织中有关有机物产生特定颜色。

还原糖(葡萄糖、果糖)+斐林→砖红色沉淀;脂肪可被苏丹Ⅲ染成橘_被苏丹Ⅳ染成红色

蛋白质与双缩脲产生紫色反应(注意:斐林试剂和双缩脲试剂的成分和用法)

三生命的基本单位——细胞

考试占比12~15%

真核细胞和原核细胞的区别

常考的真核生物:绿藻、衣藻、真菌(如酵母菌、霉菌、蘑菇)及动、植物。(有真正的细胞核)

常考的原核生物:蓝藻、细菌、放线菌、乳酸菌、硝化细菌、支原体。(没有由核膜包围的典型的细胞核)

注:病毒即不是真核也不是原核生物,原生动物(草履虫、变形虫)是真核。

显微结构模式图

动物细胞和植物细胞亚显微结构模式图

细胞膜的结构和功能

化学成分:蛋白质和脂类分子

结构:双层磷脂分子层做骨架,中间镶嵌、贯穿、覆盖蛋白质

特点:结构特点是一定的流动性,功能特点是选择透过性。

功能:①保护细胞内部②交换运输物质③细胞间识别、免疫(膜上的糖蛋白)物质进出细胞膜:

1.自由扩散:高浓度运向低浓度,不需载体和能量(O2、CO2、甘油、乙醇、脂肪酸)

2.主动运输:低浓度运向高浓度,需要载体和能量。意义:对活细胞完成各项生命活动有重要作用。

(主要是营养和离子吸收,常考小肠吸收氨基酸、葡萄糖;红细胞吸收钾离子,根吸收矿质离子)

细胞质基质内含有的物质和细胞质基质的功能

细胞膜以内、细胞核以外的部分,叫细胞质。

功能:含多种物质(水、无机盐、氨基酸、酶等)是活细胞新陈代谢的场所。提供物质和环境条件。

线粒体和叶绿体基本结构和主要功能

线粒体:真核细胞主要细胞器(动植物都有),机能旺盛的含量多。呈粒状、棒状,具有双膜结构,内膜向内突起形成“嵴”,内膜基质和基粒上有与有氧呼吸有关的酶,是有氧呼吸第二、三阶段的场所,生命体95%的能量来自线粒体,又叫“动力工厂”。含少量的DNA、RNA。

叶绿体:只存在于植物的绿色细胞中。扁平的椭球形或球形,双层膜结构。基粒上有色素,基质和基粒中含有与光合作用有关的酶,是光合作用的场所。含少量的DNA、RNA。

1、神经调节的基本方式:反射

2、反射:是指在中枢神经系统的参与下,动物或人体对内外环境变化作出的规律性应答。

3、反射的结构基础:反射弧

4、反射弧:包括感受器、传入神经、神经中枢、传出神经、效应器五个部分。

5、反射活动需要完整的反射弧才能完成。

6、兴奋:是指动物或人体内的某些组织(如神经组织)或细胞感受外界刺激后,由相对静止状态变为显著活跃状态的过程。

7、神经冲动:是指在神经系统中,以电信号的形式沿着神经纤维传导的兴奋。

8、静息状态:是指在未受刺激时,神经纤维所处于的状态。膜外侧带有正电荷,膜内侧带有等量的负电荷,整个神经元细胞不显电性。

9、静息电位:指未受刺激时,神经元细胞膜两侧的电位表现未外正内负。

10、兴奋状态:指受刺激后,神经元细胞受刺激部位膜外侧带负电荷,膜内侧带有等量正电荷的状态。

11、兴奋在神经纤维上的传导:是以电信号(局部电流)的形式传导的。

12、突触小体:指神经元轴突末梢膨大呈杯状或球状的结构。内有突触小泡,小泡内有神经递质。

13、突触:指突触小体与其他神经元的细胞体、树突或轴突相接触所形成的结构。包括突触前膜、突触间隙、突触后膜。

14、只有轴突末梢的突触小泡内有神经递质,所以,兴奋只能由轴突末梢传递给其他神经元。

15、神经递质只能由突触前膜释放,作用于突触后膜的受体。

16、兴奋在神经元之间的传递是单向的。

17、语言功能:是人脑特有的高级功能,包括与语言、文字有关的全部智力活动,涉及听、说、读、写。

18、语言中枢:位于人大脑左半球,为人脑特有。

19、语言中枢功能障碍:

⑴、W区功能障碍:不能写字;能看懂文字,能讲话,能听懂话。

⑵、V区功能障碍:不能看懂文字;能写字,能讲话,能听懂话。

⑶、S区功能障碍:不能讲话;能看懂文字,能写字,能听懂话(运动性失语症)。

⑷、H区功能障碍:不能听懂话;能写字,能看懂文字,能讲话。

1.群落演替的原因

①环境不断变化,为群落中某些物种提供有利的繁殖条件,但对另一些物种生存产生不利影响。

②生物本身不断的繁殖,迁移或者迁徙。

③种内与种间关系的改变。

④外界环境条件的改变。

⑤人类活动的干扰。人对生物群落的影响远远超过其他的自然因素。

2.演替的类型

(1)初生演替

①概念:在一个从来没有被植物覆盖的地面,或原来存在过植被、但被彻底消灭了的地方发生的演替。如在沙丘、火山岩、冰川泥上进行的演替。

地衣阶段→地衣阶段→苔藓阶段→草本植物阶段→灌木阶段→森林阶段。

③特点:演替缓慢。

(2)次生演替

①概念:在原有植被虽已不存在,但原有土壤条件基本保留,甚至还保留了植物的种子或其他繁殖体(如能发芽的地下茎)的地方发生的演替。如火灾过后的草原、过量砍伐的森林、弃耕的农田上进行的演替。

一年生小灌木→一年生小灌木→多年生小灌木→灌木→乔木。

③特点:演替快速。

(3)总结

①演替概念中一个群落被另一个群落所代替,这里的“代替”不是“取而代之”,而是优势的取代。

②群落演替的过程可划分为三个阶段

a.侵入定居阶段。一些物种侵入裸地定居成功并改良了环境,为以后侵入的同种或异种生物创造了有利条件。

b.竞争平衡阶段。通过种内或种间斗争,优势物种定居并繁殖后代,劣势物种被排斥,相互竞争过程中共存下来的物种,在利用资源上达到相对平衡。

c.相对稳定阶段。物种通过竞争,平衡地进入协同进化阶段,资源利用更为充分有效,群落结构更加完善,有比较固定的物种组成和数量比例,群落结构复杂、层次多。

③演替的趋势:生物数量越来越多,种类越来越丰富,群落的结构也越来越复杂,稳定性增强。

④初生演替和次生演替的比较

分类依据:群落演替发生的起始条件

演替的种类初生演替次生演替

起点尚无生物

和土壤已有土壤、生物、植物地下茎或种子

形成群落

所需时间经历时间长经历时间短

速度较慢较快

影响因素自然因素人类活动较为关键

实例裸岩上的演替弃耕的农田上的演替

3.知识延伸

(1)演替现象一直存在,贯穿于整个群落发展的始终。

(2)气候条件适宜时、弃耕农田可演替出树林,而在干旱的荒漠地区只能演替到草本植物或稀疏灌木阶段。

高二生物知识点归纳总结 篇4

减数丝

同点1.染色体复制一次,细胞连续次1.染色体复制一次,细胞只次

2、同源染色体在减数第一次出现联会、四分体、非姐妹染色单体互换等现象2.有同源染色体,但不发生联会

3、一个精原细胞形成4个精子或一个卵原细胞形成1个卵细胞+3个极体(退化)3.一个体细胞形成2个体细胞

4、子细胞中染色体数目比亲代细胞减少一半4.子细胞中染色体数目与亲代细胞相同

相同点1.细胞程中均出现纺锤丝

2、染色体在细胞程中都只复制一次

3、都出现有同源染色体

5、精子和卵细胞形成过程的异同

精子的形成卵细胞的形成

不同点1个精原细胞可形成4个精细胞;精细胞再经变形作用形成4个精子由于细胞质不均等1个卵原细胞只形成1个卵细胞,3个极体逐渐退化消失;无变形作用

相同点染色体的行为变化相同:即染色体复制发生在减数第一次间期;在减数第一次,同源染色体发生联会,非姐妹染色单体交叉互换;减数第一次束时,同源染色体分开,染色体数目减半;减数第二次着丝点姐妹染色单体分开

高二生物知识点归纳总结 篇5

课题一菊花的组织培养

植物组织培养的基本过程

细胞分化:在生物个体发育过程中,细胞在形态、结构和生理功能上出现稳定性差异的过程。

离体的植物组织或细胞,在培养了一段时间以后,会通过细胞分裂,形成愈伤组织,愈伤组织的细胞排列疏松而无规则,是一种高度液泡化的呈无定形状态的薄壁细胞。由高度分化的植物组织或细胞产生愈伤组织的过程,称为植物细胞的脱分化,或者叫做去分化。脱分化产生的愈伤组织继续进行培养,又可以重新分化成根或芽等器官,这个过程叫做再分化。再分化形成的试管苗,移栽到地里,可以发育成完整的植物体。

植物细胞工程

具有某种生物全套遗传信息的任何一个活细胞,都具有发育成完整个体的能力,即每个生物细胞都具有全能性。但在生物体的生长发育过程中并不表现出来,这是因为在特定的时间和空间条件下,通过基因的选择性表达,构成不同组织和器官。

植物组织培养技术的应用有:实现优良品种的快速繁殖;培育脱毒作物;制作人工种子;培育作物新品种以及细胞产物的工厂化生产等。

细胞分化是一种持久性的变化,它有什么生理意义?

使多细胞生物体中细胞结构和功能趋向专门化,有利于提高各种生理功能的效率。

比较根尖分生组织和愈伤组织的异同

影响植物组织培养的条件

材料:不同的植物组织,培养的难易程度差别很大。植物材料的选择直接关系到试验的成败。植物的种类、材料的年龄和保存时间的长短等都会影响实验结果。菊花组织培养一般选择未开花植物的茎上部新萌生的侧枝作材料。一般来说,容易进行无性繁殖的植物容易进行组织培养。选取生长旺盛嫩枝进行组培的是嫩枝生理状态好,容易诱导脱分化和再分化。

营养:离体的植物组织和细胞,对营养、环境等条件的要求相对特殊,需要配制适宜的培养基。常用的培养基是MS培养基,其中含有的大量元素是N、P、S、K、Ca、Mg,微量元素是Fe、Mn、B、Zn、Cu、Mo、I、Co,有机物有甘氨酸、烟酸、肌醇、维生素、蔗糖等。

激素:植物激素中生长素和细胞分裂素是启动细胞分裂、脱分化和再分化的关键性激素。在生长素存在的情况下,细胞分裂素的作用呈现加强趋势。在培养基中需要添加生长素和细胞分裂素等植物激素,其浓度、使用的先后顺序、用量的比例等都影响结果。

4、操作流程环境条件:PH、温度、光等环境条件。

不同的植物对各种条件的要求往往不同。进行菊花的组织培养,一般将pH控制在58左右,温度控制在18~22℃,并且每日用日光灯照射12h

配制MS固体培养基:配制各种母液:将各种成分按配方比例配制成的浓缩液(培养基母液)。

使用时根据母液的浓缩倍数,计算用量,并加蒸馏水稀释。

配制培养基:应加入的物质有琼脂、蔗糖、大量元素、微量元素、有机物和植物激素的母液,并用蒸馏水定容到1000毫升。

在菊花组织培养中,可以不添加植物激素

原因是菊花茎段组织培养比较容易。灭菌:采取的灭菌方法是高压蒸汽灭菌。

MS培养基中各种营养物质的作用是什么?与肉汤培养基相比,MS培养基有哪些特点?

大量元素和微量元素提供植物细胞所必需的无机盐;蔗糖提供碳源,维持细胞渗透压;甘氨酸、维生素等物质主要是为了满足离体植物细胞在正常代谢途径受到一定影响后所产生的特殊营养需求。

微生物培养基以有机�

外植体的消毒外植体:用于离体培养的植物器官或组织片段。选取菊花茎段时,要取生长旺盛的嫩枝。菊花茎段用流水冲洗后可加少许洗衣粉,用软刷轻轻刷洗,刷洗后在流水下冲洗20min左右。用无菌吸水纸吸干外植体表面的水分,放入体积分数为70%的酒精中摇动2~3次,持续6~7s,立即将外植体取出,在无菌水中清洗。取出后仍用无菌吸水纸吸干外植体表面水分,放入质量分数为01%的氯化汞溶液中1~2min。取出后,在无菌水中至少清洗3次,漂洗消毒液。

注意:对外植体进行表面消毒时,就要考虑药剂的消毒效果,又要考虑植物的耐受能力。

接种:接种过程中插入外植体时形态学上端朝上,每个锥形瓶接种7~8个外植体。外植体接种与细菌接种相似,操作步骤相同,而且都要求无菌操作。

培养:应该放在无菌箱中进行,并定期进行消毒,保持适宜的温度(18~22℃)和光照(12h)

移栽:栽前应先打开培养瓶的封口膜,让其在培养间生长几日,然后用流水清洗根部培养基。然后将幼苗移植到消过毒的蛭石或珍珠岩等环境中生活一段时间,进行壮苗。最后进行露天栽培。

栽培

外植体在培养过程中可能会被污染,原因有外植体消毒不彻底;培养基灭菌不彻底;接种中被杂菌污染;锥形瓶密封性差等。

课题二月季的花药培养

被子植物的花粉发育被子植物的雄蕊通常包含花丝、花药两部分。花药为囊状结构,内部含有许多花粉。花粉是由花粉母细胞经过减数分裂而形成的,因此,花粉是单倍体的生殖细胞。被子植物花粉的发育要经历小孢子四分体时期、单核期和双核期等阶段。在小孢子四分体时期,4个单倍体细胞连在一起,进入单核期时,四分体的4个单倍体细胞彼此分离,形成4个具有单细胞核的花粉粒。这时的细胞含浓厚的原生质,核位于细胞的中央(单核居中期)。随着细胞不断长大,细胞核由中央移向细胞一侧(单核靠边期),并分裂成1个生殖细胞核和1个花粉管细胞核,进而形成两个细胞,一个是生殖细胞,一个是营养细胞。生殖细胞将在分裂一次,形成两个精子。

注意:①成熟的花粉粒有两类,一类是二核花粉粒,其花粉粒中只含花粉管细胞核和生殖细胞核,二核花粉粒的精子是在花粉管中形成的;另一类是三核花粉粒,花粉在成熟前,生殖细胞就进行一次有丝分裂,形成两个精子,此花粉粒中含有两个精子核和一个花粉管核(营养核)②花粉发育过程中的四分体和动物细胞减数分裂的四分体不同。花粉发育过程中的四分体是花粉母细胞经减数分裂形成的4个连在一起的单倍体细胞;而动物细胞减数分裂过程中的四分体是联会配对后的一对同源染色体,由于含有四条染色单 ③同一生殖细胞形成的两个精子,其基因组成完全相同。

产生花粉植株的两种途径通过花药培养产生花粉植株(即单倍体植株)一般有两种途径,一种是花粉通过胚状体阶段发育为植物,另一种是花粉在诱导培养基上先形成愈伤组织,再将其诱导分化成植株。这两种途径之间并没有绝对的界限,主要取决于培养基中激素的种类及其浓度配比。

注意:①无论哪种产生方式,都要先诱导生芽,再诱导生根②胚状体:植物体细胞组织培养过程中,诱导产生的形态与受精卵发育成的胚非常类似的结构,其发育也与受精卵发育成的胚类似,有胚芽、胚根、胚轴等完整结构,就像一粒种子,又称为细胞胚。

影响花药培养的因素诱导花粉能否成功及诱导成功率的高低,受多种因素影响,其中材料的选择与培养基的组成是主要的影响因素

亲本的生理状况:花粉早期是的花药比后期的更容易产生花粉植株,选择月季的初花期。

合适的花粉发育时期:一般来说,在单核期,细胞核由中央移向细胞一侧的时期,花药培养成功率最高

花蕾:选择完全未开放的花蕾

亲本植株的生长条件、材料的低温预处理以及接种密度等对诱导成功率都有一定影响

材料的选取:选择花药时,一般要通过镜检来确定其中的花粉是否处于适宜的发育期。确定花粉发育时期的最常用的方法是醋酸洋红法。但是,某些植物的花粉细胞核不易着色,需采用焙花青-铬矾法,这种方法能将花粉细胞核染成蓝黑色

材料的消毒

接种和培养:灭菌后的花蕾,要在无菌条件下除去萼片和花瓣,并立即将花药接种到培养基上。在剥离花药时,要尽量不损伤花药(否则接种后容易从受伤部位长生愈伤组织),同时还要彻底去除花丝,因为与花丝相连的花药不利于愈伤组织或胚状体的形成,通常每瓶接种花药7~10个,培养温度控制在25℃左右,不需要光照幼小植株形成后才需要光照一般经过20~30天培养后,会发现花药开裂,长出愈伤组织或形成胚状体。将愈伤组织及时转移到分化培养基上,以便进一步分化出再生植株。如果花药开裂释放出胚状体,则一个花药内就会产生大量幼小植株,必须在花药开裂后尽快将幼小植株分开,分别移植到新的培养基上,否则这些植株将很难分开。还需要对培养出来的植株做进一步的鉴定和筛选。

植物组织培养技术与花药培养技术的相同之处是:培养基配制方法、无菌技术及接种操作等基本相同。两者的不同之处在于:花药培养的选材非常重要,需事先摸索时期适宜的花蕾;花药裂开后释放出的愈伤组织或胚状体也要及时更换培养基;花药培养对培养基配方的要求更为严格。这些都使花药培养的难度大为增加。

样品水分含量(%)计算公式如下:

(烘干前容器和样品质量-烘干后容器和样品质量)/烘干前样品质量

毛霉的生长:条件:将豆腐块平放在笼屉内,将笼屉中的控制在15~18℃,并保持一定的温度。

来源:1来自空气中的毛霉孢子,2直接接种优良毛霉菌种

时间:5天

加盐腌制:将长满毛霉的豆腐块分层整齐地摆放在瓶中,同时逐层加盐,随着层数的加高而增加盐量,接近瓶口表面的盐要铺厚一些。加盐腌制的时间约为8天左右。

用盐腌制时,注意控制盐的用量:盐的浓度过低,不足以抑制微生物的生长,可能导致豆腐腐败变质;盐的浓度过高会影响腐乳的口味

食盐的作用:1抑制微生物的生长,避免腐败变质2析出水分,是豆腐变硬,在后期制作过程中不易酥烂3调味作用,给腐乳以必要的咸味4浸提毛酶菌丝上的蛋白酶。

配制卤汤:卤汤直接关系到腐乳的色、香、味。卤汤是由酒及各种香辛料配制而成的。卤汤中酒的含量一般控制在12%左右。

酒的作用:1防止杂菌污染以防腐2与有机酸结合形成酯,赋予腐乳风味3酒精含量的高低与腐乳后期发酵时间的长短有很大关系,酒精含量越高,对蛋白酶的抑制作用也越大,使腐乳成熟期延长;酒精含量过低,蛋白酶的活性高,加快蛋白质的水解,杂菌繁殖快,豆腐易腐败,难以成块。

香辛料的作用:1调味作用2杀菌防腐作用3参与并促进发酵过程

防止杂菌污染:①用来腌制腐乳的玻璃瓶,洗刷干净后要用沸水消毒。②装瓶时,操作要迅速小心。整齐地摆放好豆腐、加入卤汤后,要用胶条将瓶口密封。封瓶时,最好将瓶口通过酒精灯的火焰,防止瓶口被污染。

疑难解答

(1)利用所学的生物学知识,解释豆腐长白毛是怎么一回事?

豆腐生长的白毛是毛霉的白色菌丝。严格地说是直立菌丝,在豆腐中还有匍匐菌丝。

(2)为什么要撒许多盐,将长毛的豆腐腌起来?

盐能防止杂菌污染,避免豆腐腐败。

(3)我们平常吃的豆腐,哪种适合用来做腐乳?

含水量为70%左右的豆腐适于作腐乳。用含水量高的豆腐制作腐乳,不易成形。

(4)吃腐乳时,你会发现腐乳外部有一层致密的“皮”。这层“皮”是怎样形成的呢?它对人体有害吗?它的作用是什么?

“皮”是前期发酵时在豆腐表面上生长的菌丝(匍匐菌丝),对人体无害。它能形成腐乳的“体”,使腐乳成形。

高二生物复习知识点归纳总结 篇6

免疫系统在维持稳态中的作用

(1)免疫是机体的一种特殊的保护性生理功能。

(2)非特异性免疫是人类生来就有的,不针对某一特定的病原体,而是对大多数病原体起到防御作用。

人体抵御病原体的三道防线分别是第一道防线:皮肤和粘膜;第二道防线:杀菌物质、吞噬细胞;第三道防线:特异性免疫。

(3)特异性免疫是人类后天形成的,免疫器官、免疫细胞借助血液循环和淋巴循环,进行的免疫,针对某一特定的病原体起到防御作用。非特性免疫中依靠杀菌物质和吞噬细胞消灭病原体。

(4)淋巴细胞的分化过程:造血干细胞在骨髓中分化为B细胞,在抗原刺激下分化为浆细胞。造血干细胞在胸腺中分化为T细胞,在抗原刺激下分化为效应T细胞。

(5)能够引起机体产生特异性免疫的物质叫做抗原。抗原具有大分子、一般异物性和特异性的性质。抗原不一定是异物。

(6)抗体是抗原刺激下产生,能够与相应抗原特异性结合的免疫球蛋白。

高二生物的知识点总结 篇7

无机物

一、水:含量最多的化合物

1、人体缺乏表现:缺水10%,生理紊乱;缺水20%,生命停止

2、作用:良好溶剂、输送、参与化学反应;水比热大,调节体温、保持体温恒定

3、存在形式:自由水(大部分,参与上述2的作用)

结合水(少量,生物细胞组织中的成分)

二、无机盐:离子状态存在

1、作用:a、生物体组成成分(例子:血红蛋白:Fe2+骨骼:Ca2+ 【缺钙,肌肉抽搐】PO43-磷脂的组成成分、Mg植物叶绿素的必需成分、Zn多种酶的组成元素、I甲状腺素的`原料)

b、参与生物体的代谢活动和调节内环境稳定

食物中的主要营养成分的鉴定

1、糖类:淀粉(非还原性糖)——碘液(蓝色)

还原性糖(葡萄糖、麦芽糖) ——斐林试剂班氏试剂(加热后出现砖红色)

2、蛋白质——(5%NaOH和1%CuSO4)双缩脲试剂(紫色)

3、脂肪——苏丹III(橘红色)

高二生物知识点总结 篇8

1.类脂与脂类

脂类:包括脂肪、固醇和类脂,因此脂类概念范围大。

类脂:脂类的一种,其概念的范围小。

2.纤维素、维生素与生物素

纤维素:由许多葡萄糖分子结合而成的多糖。是植物细胞壁的主要成分。不能为一般动物所直接消化利用。

维生素:生物生长和代谢所必需的微量有机物。大致可分为脂溶性和水溶性两种,人和动物缺乏维生素时,不能正常生长,并发生特异性病变——维生素缺乏症。

生物素:维生素的一种,肝、肾、酵母和牛奶中含量较多。是微生物的生长因子。

3.大量元素、主要元素、矿质元素、必需元素与微量元素

大量元素:指含量占生物体总重量万分之一以上的元素,如C、H、O、N、P、S、K、Ca、Mg。其中N、P、S、K、Ca、Mg是植物必需的矿质元素中的大量元素。C是基本元素。

主要元素:指大量元素中的前6种元素,即C、H、O、N、P、S,大约占原生质总量的97%。

矿质元素:指除C、H、O以外,主要由根系从土壤中吸收的元素。

必需元素:植物生活所必需的元素。它必需具备下列条件:第一,由于该元素的缺乏,植物生长发育发生障碍,不能完成生活史;第二,除去该元素则表现专一的缺乏症,而且这种缺乏症是可以预防和恢复的;第三,该元素在植物营养生理上应表现直接的效果,绝不是因土壤或培养基的物理、化学、微生物条件的改变而产生的间接效果。

微量元素:指生物体需要量少(占生物体总重量万分之一以下),但维持正常生命活动不可缺少的元素,如Fe、Mn、Zn、Cu、B、Mo,植物必需的微量元素还包括Cl、Ni。

4.还原糖与非还原糖

还原糖:指分子结构中含有还原性基团(游离醛基或α-碳原子上连有羟基的酮基)的糖,如葡萄糖、果糖、麦芽糖。与斐林试剂或班氏试剂共热时产生砖红色Cu2O沉淀。

非还原糖:如蔗糖内没有游离的具有还原性的基团,因此叫作非还原糖。

5.斐林试剂、双缩脲试剂与二苯胺试剂

斐林试剂:用于鉴定组织中还原糖存在的试剂。很不稳定,故应将组成斐林试剂的A液(0.1g/mL的NaOH溶液)和B液(0.05g/mL的CuSO4溶液)分别配制、储存。使用时,再临时配制,将4-5滴B液滴入2mLA液中,配完后立即使用。原理是还原糖的基团—CHO与Cu(OH)2在加热条件下生成砖红色的Cu2O沉淀。

双缩脲试剂:用于鉴定组织中蛋白质存在的试剂。其包括A液(0.1g/mL的NaOH溶液)和B液(0.01g/mL的CuSO4溶液)。在使用时要分别加入。先加A液,造成碱性的反应环境,再加B液,这样蛋白质(实际上是指与双缩脲结构相似的。肽键)在碱性溶液中与Cu2+反应生成紫色或紫红色的络合物。

二苯胺试剂:用于鉴定DNA的试剂,与DNA混匀后,置于沸水中加热5分钟,冷却后呈蓝色。

6.血红蛋白与单细胞蛋白

血红蛋白:含铁的复合蛋白的一种。是人和其他脊椎动物的红细胞的主要成分,主要功能是运输氧。

单细胞蛋白:微生物含有丰富的蛋白质,人们通过发酵获得大量的微生物菌体,这种微生物菌体就叫作单细胞蛋白。

7.显微结构与亚显微结构

显微结构:在光学显微镜下能看到的结构,一般只能放大几十倍至几百倍。

亚显微结构:能够在电子显微镜下看到的直径小于0.2μm的细微结构。

8.原生质与原生质层

原生质:是细胞内的生命物质。动植物细胞都具有,分化为细胞膜、细胞质、细胞核三部分。主要由蛋白质、脂类、核酸等物质构成。

原生质层:是一种选择透过性膜,只存在于成熟的植物细胞中,包括细胞膜、液泡膜及两层膜之间的细胞质。它与成熟植物细胞的原生质相比,缺少了细胞液和细胞核两部分。

9.赤道板与细胞板

赤道板:细胞中央的一个平面,这个平面与有丝分裂中纺锤体的中轴相垂直,类似于地球赤道的位置。

细胞板:植物细胞有丝分裂末期在赤道板的位置出现的一层结构,随细胞分裂的进行,它由细胞中央向四周扩展,逐渐形成新的细胞壁。

高二生物必背知识点9

本节属于生态学部分的基础,是生态学研究的最小单位,内容主要包括种群的特征、种群的数量变化和探究培养液中酵母菌种群数量的动态变化三个方面的内容,其中种群的数量变化是本节的重中之重。种群是指在一定自然区域内的同种生物的全部个体。我们研究种群主要研究其数量特征,种群密度是种群最基本的数量特征;出生率和死亡率,迁入率和迁出率是决定种群大小和种群密度的直接因素;年龄组成和性别比例不直接决定种群密度,但是能够用来预测种群密度的变化趋势。种群个体在其生活空间中的位置状态或布局称种群的空间特征,通常有均匀分布、随机分布、集群分布三种类型。

种群数量的变化我们主要研究种群的数量增长曲线,有“J”型曲线和“S”型曲线两种类型。“J”型曲线是在理想状态(食物空间条件充裕、气候适宜、没有敌害等)下种群数量增长的形式,以时间为横坐标、种群数量为纵坐标来表示,曲线大致呈“J”型;可用公式Nt=N0λt表示,(λ表示第二年是第一年的倍数)由图形和公式都可看出,没有K值。

“S”型曲线是自然条件(资源和空间是有限的)下,种群经过一定时间的增长后,数量趋于稳定的增长曲线。环境容纳量(即K值)是指在环境条件不受破坏的情况下,一定空间中所维持的种群最大数量。种群数量达到K值后保持稳定,一般情况下,种群数量为K/2时增长速率达最大值。此问题的研究可用于生产实践中的渔业捕捞、控制有害动物等方面。

【种群数量的变化考点分析】

本节内容在高考中通常以选择题的形式出现,考查对种群特征的理解掌握情况,其中种群密度和种群的数量变化曲线是以往的常考知识部分。在平时测试时,简答题部分通常考查种群密度的调查的实验和探究培养液中酵母菌种群数量的动态变化实验。

【种群数量的变化知识点误区】

年龄组成只是预测种群密度的变化趋势,但该趋势不一定能实现,因为影响种群数量变化的还有气候、食物、天敌等。对于人口数量的变化一般不同于自然种群。自然条件下,种群数量变化都是“S”型,包括外来物种入侵,除非题目中告知了理想条件下或实验室条件下或外来物种入侵的早期阶段或无环境阻力的条件下,才可以考虑“J”型变化。对有害动物的控制我们要想法降低环境容纳量来解决,如引入天敌、断绝食物来源等措施,而不能是控制在K/2左右。

高二生物的知识点总结 篇9

新陈代谢是生物最基本的特征,是生物与非生物的最本质的区别。

酶是活细胞产生的一类具有生物催化作用的有机物,其中绝大多数酶是蛋白质,少数酶是RNA.

酶的催化作用具有高效性和专一性;并且需要适宜的温度和pH值等条件。

ATP是新陈代谢所需能量的直接来源。

光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并且释放出氧的过程。光合作用释放的氧全部来自水。

渗透作用的产生必须具备两个条件:一是具有一层半透膜,二是这层半透膜两侧的溶液具有浓度差。

植物根的成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的过程。

糖类、脂类和蛋白质之间是可以转化的,并且是有条件的、互相制约着的。

高等多细胞动物的体细胞只有通过内环境,才能与外界环境进行物质交换。

正常机体在神经系统和体液的调节下,通过各个器官、系统的协调活动,共同维持内环境的相对稳定状态,叫稳态。稳态是机体进行正常生命活动的必要条件。

对生物体来说,呼吸作用的生理意义表现在两个方面:一是为生物体的生命活动提供能量,二是为体内其它化合物的合成提供原料。

高二生物必背知识点4

向光性实验发现:感受光刺激的部位在胚芽鞘尖端,而向光弯曲的部位在尖端下面的。一段。

生长素对植物生长的影响往往具有两重性。这与生长素的浓度高低和植物器官的种类等有关。一般来说,低浓度促进生长,高浓度抑制生长。

在没有受粉的番茄(黄瓜、辣椒等)雌蕊柱头上涂上一定浓度的生长素溶液可获得无子果实。

植物的生长发育过程,不是受单一激素的调节,而是由多种激素相互协调、共同调节的。

下丘脑是机体调节内分泌活动的枢纽。

相关激素间具有协同作用和拮抗作用。

神经系统调节动物体各种活动的基本方式是反射。反射活动的结构基础是反射弧。

神经元受到刺激后能够产生兴奋并传导兴奋;兴奋在神经元与神经元之间是通过突触来传递的,神经元之间兴奋的传递只能是单方向的。

在中枢神经系统中,调节人和高等动物生理活动的高级中枢是大脑皮层。

动物建立后天性行为的主要方式是条件反射。

判断和推理是动物后天性行为发展的级形式,是大脑皮层的功能活动,也是通过学习获得的。

动物行为中,激素调节与神经调节是相互协调作用的,但神经调节仍处于主导的地位。

动物行为是在神经系统、内分泌系统和运动器官共同协调下形成的。

高二生物的知识点总结 篇10

一、基因工程的概念

基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。

二、基因工程的原理及技术原理:基因重组技术

基因工程的基本工具

1.“分子手术刀”——限制性核酸内切酶(限制酶)

(1)来源:主要是从原核生物中分离纯化出来的。

(2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。

(3)结果:经限制酶切割产生的DN_末端通常有两种形式:黏性末端和平末端。

2.“分子缝合针”——DNA连接酶

(1)两种DNA连接酶(E?coliDNA连接酶和T4DNA连接酶)的比较:

①.相同点:都缝合磷酸二酯键。

②.区别:E?coliDNA连接酶来源于T4噬菌体,只能将双链DN_互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。

(2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。DNA连接酶是连接两个DN_的末端,形成磷酸二酯键。

3.“分子运输车”——载体

(1)载体具备的条件:

①能在受体细胞中复制并稳定保存。

②具有一至多个限制酶切点,供外源DN_插入。

③具有标记基因,供重组DNA的鉴定和选择。

(2)最常用的载体是质粒:

它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。

(3)其它载体:噬菌体的衍生物、动植物病毒

基因工程的基本操作程序

第一步:目的基因的获取

1.目的基因是指:编码蛋白质的结构基因。

2.原核基因采取直接分离获得,真核基因是人工合成。人工合成目的基因的常用方法有反转录法和化学合成法。

技术扩增目的基因

(1)原理:DNA双链复制

(2)过程:①加热至90~95℃DNA解链;

②冷却到55~60℃,引物结合到互补DNA链;

③加热至70~75℃,热稳定DNA聚合酶从引物起始互补链的合成

第二步:基因表达载体的构建

1.目的:使目的基因在受体细胞中稳定存在,并且可以遗传至下一代,使目的基因能够表达和发挥作用。

2.组成:目的基因+启动子+终止子+标记基因

(1)启动子:是一段有特殊结构的DN_,位于基因的首端,是RNA聚合酶识别和结合的部位,能驱动基因转录出mRNA,最终获得所需的蛋白质。

(2)终止子:也是一段有特殊结构的DN_,位于基因的。尾端。

(3)标记基因的作用:是为了鉴定受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。常用的标记基因是抗生素基因。

第三步:将目的基因导入受体细胞

1.转化的概念:是目的基因进入受体细胞内,并且在受体细胞内维持稳定和表达的过程。

2.常用的转化方法:将目的基因导入植物细胞:采用最多的方法是农杆菌转化法,其次还有基因枪法和花粉管通道法等。

3.将目的基因导入动物细胞:最常用的方法是显微注射技术。此方法的受体细胞多是受精卵。将目的基因导入微生物细胞:

4.重组细胞导入受体细胞后,筛选含有基因表达载体受体细胞的依据是

标记基因是否表达。

第四步:目的基因的检测和表达

1.首先要检测转基因生物的染色体DNA上是否插入了目的基因,方法是采用DNA分子杂交技术。

2.其次还要检测目的基因是否转录出了mRNA,方法是采用用标记的目的基因作探针与mRNA

杂交。

3.最后检测目的基因是否翻译成蛋白质,方法是从转基因生物中提取

蛋白质,用相应的抗体进行抗原-抗体杂交。

4.有时还需进行个体生物学水平的鉴定。如转基因抗虫植物是否出现抗虫性状。

基因工程的应用:

1.植物基因工程:抗虫、抗病、抗逆转基因植物,利用转基因改良植物的品质。

2.动物基因工程:提高动物生长速度、改善畜产品品质、用转基因动物生产药物。

3.基因治疗:把正常的外源基因导入病人体内,使该基因表达产物发挥作用。

蛋白质工程的概念:

蛋白质工程:

是指以蛋白质分子的结构规律及其生物功能的关� (基因工程在原则上只能生产自然界已存在的蛋白质)

(1)蛋白质工程崛起的缘由:基因工程只能生产自然界已存在的蛋白质

(2)蛋白质工程的基本原理:它可以根据人的需求来设计蛋白质的结构,又称为第二代的基因工程。

(3)基本途径:从预期的蛋白质功能出发,设计预期的蛋白质结构,推测应有的氨基酸序列,找到相对应的脱氧核苷酸序列(基因)以上是蛋白质工程特有的途径;以下按照基因工程的一般步骤进行。(注意:目的基因只能用人工合成的方法)

(4)设计中的困难:如何推测非编码区以及内含子的脱氧核苷酸序列

高二生物复习知识点归纳总结 篇11

生态系统的稳定性

(1)生态系统所具有的保持或恢复自身结构和功能相对稳定的能力,叫做生态系统的稳定性。

(2)生态系统的稳定性包括抵抗力稳定性和恢复力稳定性两个方面。

(3)生态系统的抵抗力稳定性是指生态系统抵抗外界干扰并使自身的结构和功能保持原状的能力。

(4)生态系统具有一定的自我调节能力,因此具有抵抗力稳定性。

(5)生态系统抵抗力稳定性与生态系统组成成分多少和营养结构的复杂程度有关。

(6)生态系统的恢复力稳定性指生态系统受到外界干扰因素的破坏后恢复到原状的能力。

(7)对于一个生态系统来说,抵抗力稳定性与恢复力稳定性的强弱是一般呈相反的关系。

(8)提高生态系统的稳定性,一方面要控制对生态系统干扰的程度,对生态系统的利用应该适度,不应超过生态系统的自我调节能力;另一方面,对人类利用强度较大的生态系统,应实施相应的物质、能量投入,保证生态系统内部结构与功能的协调。

高二生物的知识点总结 篇12

光合作用

(自然界最本质的物质代谢和能量代谢)

1.概念:绿色植物通过叶绿体利用光能,把二氧化碳和水转化成储存能量的有机物,并释放出氧气的过程。

方程式:CO2+H20xx——→(CH2O)+O218

注意:光合作用释放的氧气全部来自水,光合作用的产物不仅是糖类,还有氨基酸(无蛋白质)、脂肪,因此光合作用产物应当是有机物。

2.色素:包括叶绿素3/4和类胡萝卜素1/4

色素分布图:

色素提取实验:丙提取色素;

二氧化硅使研磨更充分

碳酸钙防止色素受到破坏

3.光反应阶段

场所:叶绿体囊状结构薄膜上进行条件:必须有光,色素、化合作用的'酶。

步骤:

①水的光解,水在光下分解成氧气和还原氢H2O—→2[H]+1/2O2

②ATP生成,ADP与Pi接受光能变成ATP

能量变化:光能变为ATP活跃的化学能

4.暗反应阶段

场所:叶绿体基质

条件:有光或无光均可进行,二氧化碳,能量、酶

步骤:

①二氧化碳的固定,二氧化碳与五碳化合物结合生成两个三碳化合物

②二氧化碳的还原,三碳化合物接受还原氢、酶、ATP生成有机物

能量变化:ATP活跃的化学能转变成化合物中稳定的化学能

关系:光反应为暗反应提供ATP和[H]

5.意义:

①制造有机物

②转化并储存太阳能

③使大气中的CO2和O2保持相对稳定。

渗透作用的原理、细胞吸水、失水

1.渗透吸水:条件:半透膜、浓度差

2.植物原生质层是选择透过性膜,当膜内外存在浓度差时细胞吸(失)水。

原则:谁浓度高谁获得水

3.植物吸水方式:

①吸胀吸水:无液泡的细胞吸水方式(干燥种子、根尖分生区细胞)。

②渗透吸水:成熟植物(具大液泡)细胞吸水方式。

水分的运输、利用和散失

由根运输到茎、叶,1-5%留在植物体内,95-99%用于蒸腾。

高二生物的知识点总结 篇13

(1)概念:在个体发育中,由一个或多个细胞增殖产生的后代,在形态、结构和生理功能上发生一系列稳定性差异的过程。

(2)特征:具有持久性、稳定性和不可逆性。

(3)意义:是生物个体发育的基础。

(4)原因:基因选择性表达的`结果,遗传物质没有改变。

一键复制全文保存为WORD
相关文章