我们眼下的社会,报告对我们来说并不陌生,要注意报告在写作时具有一定的格式。为了让您不再为写报告头疼,
实验名称:
探究单摆振动周期与摆长的关系
实验目的:
1. 验证单摆的振动周期的平方与摆长成正比的关系。
2. 通过实验测定本地重力加速度的值。
实验仪器:
单摆装置
秒表(精度0.01s)
游标卡尺(精度0.02mm)
米尺(精度0.1cm)
实验原理:
单摆是一种理想化的物理模型,当摆角小于5°时,其振动周期T与摆长L和重力加速度g的关系为:T = 2π√(L/g)。通过改变摆长L并测量对应的振动周期T,可以验证上述关系,并计算重力加速度g。
实验步骤:
1. 调节单摆装置,使其沿铅直方向稳定。
2. 使用游标卡尺测量摆球的直径,并使用米尺测量摆线的长度,两者之和即为摆长L。
3. 将摆球拉至一侧(摆角小于5°),然后释放,使用秒表记录摆球连续摆动50次的时间t,重复测量4次以提高准确性。
4. 计算每次测量的周期T(T = t/50),并求出平均值。
5. 改变摆长L,重复步骤2-4,测量不同摆长下的振动周期。
6. 根据实验数据绘制T与L的关系曲线,验证其是否为直线关系。
实验数据:
(此处省略具体数据表格,可根据实验实际情况填写)
数据处理与分析:
1. 计算各摆长下的平均周期T。
2. 绘制T与L的关系曲线,观察其是否为直线。
3. 根据直线斜率k计算重力加速度g(g = 4πk/1)。
实验结论:
通过实验数据的'处理与分析,我们发现T与L之间确实存在直线关系,验证了单摆振动周期的平方与摆长成正比的关系。同时,我们也成功测定了本地重力加速度的值,与标准值相近,说明实验具有较高的准确性。
实验反思:
在实验过程中,我们需要注意控制摆角的大小,避免其过大导致实验结果偏离理论值。此外,测量时间时也需要保持耐心和准确性,以提高实验结果的可靠性。
一. 说教材
1. 教材分析
教科版高中《物理》选修(3—4)第一章第2节的内容。本节内容是简谐运动的实例应用,是高考的常考点,既是本章的核心内容,又是教学重点。
2. 学情分析
此时的高中学生同已经形成了一定抽象思维过渡,而本节内容又主要以抽象的理想化物理模型来进行理解,结合学生的实际情况,只要老师合理运用多种教学方法和手段,激发学生的学习兴趣,学生完全有能力完成本节内容的学习。
3. 教学目标
知识与技能:
1.知道什么是单摆;
2.理解摆角很小时单摆的振动是简谐运动;
3.知道单摆的周期跟什么因素有关,了解单摆的周期公式,并能用来进行有关的计算;
过程与方法:
1.通过单摆的教学,知道单摆是一种理想化的系统,学会用理想化的方法建立物理模型;
2.通过单摆做简谐运动条件的学习,体会用近似处理方法来解决物理问题;
3.通过研究单摆的周期,掌握用控制变量法来研究物理问题;
4.培养学生的观察实验能力、思维能力。
情感态度和价值观:
1.通过介绍科学家的情况,激发学生发现知识,热爱科学的热情;鼓励学生像科学家那样不怕困难,善于发现,勇于创造。
4. 教学中的重点和难点
重点:1. 知道单摆的回复力;
2. 单摆的周期公式。
难点:1.单摆做简谐运动的条件——摆角小于或等于5°时的振动;
2.单摆振动的周期与什么有关。
突破的方法:通过课堂实验和课件演示以及巩固练习来突破重难点,同时引导学生自主学习。
二. 教法和学法
本次课主要采用探究式综合教学法配以活动参与创设情景、旧知回顾温故知新、最后自主探究获得新知,学生的学法主要为游戏活动法和自主探究法,让学生在自主探究活动中发现问题、思考问题、解决问题。
三. 教学过程
(-)创设情景 引入课题
首先复习提问:
什么是简谐运动?物体做简谐运动需要满足什么条件?巩固前面学过的知识,有助于学生后面理解单摆做简谐运动的条件
接着由生活实例引入:
吊灯被风吹后,会如何运动?
日常生活中,我们经常看到悬挂起来的物体在竖直面内往复运动,让学生举一些具体的例子;从实际问题引入,再通过联想、建模,使学生感到物理所研究的对象不是凭空想象出来的,是来源于生活实际,客观世界。
过渡:如何把复杂的实际问题简化呢?
现在研究一种简单的情况。——出示单摆装置
(二)实际分析 新课教学
在引入过后,提出单摆模型,通过构建理想建模,对学生进行物理思想和科学的思维方法培养
[演示]单摆振动。通过演示实验和课件展示,让学生从观察和思考中去归纳出单摆振动的特点,从而对单摆振动的规律有一些定性的了解。同时观察单摆运动,思考单摆运动具有什么特点?
引出单摆做机械振动,必然受到回复力的作用,引导学生对单摆的回复力进行分析。得到F=-k x,并在里得到这个前提是偏角小于或等于5°,这里采用近似思想,并告诉学生这种思想运用到很多方面,引导学生自己学会这种方法。突破了第一个教学难点,及第一个教学重点。
接着探究单摆做简谐运动的周期
首先给学生演示奇妙的摆浪,让学生观察思考摆浪呈现不同图案的原因,通过分析得到周期与摆长有一定的关系,并引导学生思考,设计实验自主探究单摆与摆长之间的关系,即测量不同摆长的单摆的周期并绘图得到周期与摆长的关系为周期与摆长的二次根成正比,启发学生思考,让学生主动参与学习过程,充分发挥学生自我学习的积极性。接着再让学生思考,单摆的周期还有什么有关呢?接着讲述有什么关系呢?物理学家惠更斯经过研究,在大量可靠的实验基础上,经过一系列的理论推导和证明得到,单摆的周期还与g的二次根成反比,并给出单摆的周期公式为:
突破了第二个教学难点及第二个教学重点。
(三) 学以致用 课后延展
在学了以上知识后,向学生提问:不改变摆浪上的任何东西,将摆浪从我们现在的位置拿到拿到g不同的地方会怎样?
(四)温故知新 课堂小结 先组织学生回顾小结,以便学生系统掌握所学知识。
接着让同学完成书中“练习与评价”环节的例题,对所学知识进行巩固。
这是我的板书设计。
以上内容就是我的说课,谢谢大家!
篇一:大学物理碰撞打靶实验报告 碰撞打靶实验
物体间的碰撞是自然界中普遍存在的的现象,从宏观物体的一体碰撞到微观物体的粒子碰撞都是物理学中极其重要的研究课题。
本实验通过两个体的碰撞、碰撞前的单摆运动以及碰撞后的平抛运动,应用已学到的力学定律去解决打靶的实际问题,从而更深入地了解力学原理,并提高分析问题、解决问题的能力。
一.实验原理
1、 碰撞:指两运动物体相互接触时,运动状态发生迅速变化的现象。正碰是指两碰撞物体的速度都沿着它们质心连线方向的碰撞;其他碰撞则为斜碰。 2. 碰撞时的动量守恒:两物体碰撞前后的总动量不变。
3、 平抛运动:将物体用一定的初速度v0沿水平方向抛出,在不计空气阻力的情况下,物体所作的运动称平抛运动,运动学方程为x?v0t,y?12gt(式t中是从抛出开始计算的时2 间,x是物体在时间t内水平方向的移动距离,y是物体在该时间内竖直下落的距离,g是重力加速度)
4、 在重力场中,质量为m的物体在被提高距离h后,其势能增加了?ep?mgh 5. 质量为m的物体以速度v运动时,其动能为ek?12mv 2 6. 机械能的转化和守恒定律:任何物体系统在势能和动能相互转化过程中,若合外力对该物体系统所做的功为零,内力都是保守力(无耗散力),则物体系统的总机械能(即势能和动能的总和)保持恒定不变。
7、 弹性碰撞:在碰撞过程中没有机械能损失的碰撞。
8、 非弹性碰撞:碰撞过程中的机械能不守恒,其中一部分转化为非机械能(如热能)。 二.实验仪器
碰撞打靶实验仪如图1所示,它由导轨、单摆、升降架(上有小电磁铁,可控断通)、被撞小球及载球支柱,靶盒等组成。载球立柱上端为锥形平头状,减小钢球与支柱接触面积,在小钢球受击运动时,减少摩擦力做功。支柱具有弱磁性,以保证小钢球质心沿着支柱中心位置。图1 碰撞打靶实验仪
升降架上装有可上下升降的磁场方向与杆平行的电磁铁,杆上的有刻度尺及读数指示移动标志。仪器上电磁铁磁场中心位置、单摆小球(钢球)质心与被碰撞小球质心在碰撞前后处于同一平面内。由于事先二球质心被调节成离导轨同一高度,所以,一旦切断电磁铁电源,被吸单摆小球将自由下摆,并能正中地与被击球碰撞。被击球将作平抛运动,最终落到贴有目标靶的金属盒内。
小球质量可用电子天平称衡。
三.实验内容
(一)必做内容:
1、 调整导轨水平,如果不水平可调节导轨上的两只调节螺钉。
2、 用电子天平测量被撞球(直径和材料均与撞击球相同)的质量m,并以此也作为撞击球 的质量。
3、 根据靶心的位置,测出x,估计被撞球的高度y,并据此算出撞击球的高度h0(预习时 应自行推导出由x和y计算高度h0的公式)
4、 通过绳来调节撞击球的高低和左右,使之能在摆动的最低点和被撞球进行正碰。 5. 把撞击球吸在磁铁下,调节升降架使它的高度为h0,细绳拉直。 6. 让撞击球撞击被撞球,记下被撞球击中靶纸的位置x。(可撞击多次求平均),据此计 算碰撞前后总的能量损失为多少?应对撞击球的高度作怎样的调整,才可使击中靶心?(预习时应自行推导出由x和y,及计算高度差h-h0=?h的公式) 7. 对撞击球的高度作调整后,再重复若干次试验,以确定能击中靶心的 h 值;被撞球击 中靶纸的位置后记下此 h 值。
8、 观察二小球在碰撞前后的运动状态,分析碰撞前后各种能量损失的原因。
(二)选做内容:
观察两个不同质量钢球碰撞前后运动状态,测量碰撞前后的能量损失。用直径、质量都不同的被撞球,重复上述实验,比较实验结果并讨论之。(注意:由于直径不同,应重新调节升降台的高度,或重新调节细绳)
四.思考题
1、 如两质量不同的球有相同的动量,它们是否也具有相同的动能?如果不等,哪个动能大? 2. 找出本实验中,产生?h 的各种原因(除计算错误和操作不当原因外)。
3、 在质量相同的两球碰撞后,撞击球的运动状态与理论分析是否一致?这种现象说明了什么?
4、 如果不放被撞球,撞击球在摆动回来时能否达到原来的高度?这说明了什么? 5. 此实验中,绳的张力对小球是否做功?为什么?
6、 定量导出本实验中碰撞时传递的能量e和总能量 e的比?=e/e与两球质量比? =m1/m2的关系。
7、 本实验中,球体不用金属,用石蜡或软木可以吗?为什么?
实验原理:(要求同学们能够自己推导有关计算公式,自行设计并画出实验原理图) 以下仅为参考:
1.撞击球下摆至最低点过程,机械能守恒: (1)
2.撞击球与被撞球发生完全弹性碰撞(正碰),动量守恒:,(2) 3.被撞球以初始速率 做平抛运动: (3) (1)、(2)、(3)式得: 式中,为靶心位置,(4) 为撞击球与被撞球高度差的理论值。 为被撞球的高度, 当被撞球的高度为为
由此得碰撞系统在整个运动过程的能量损失应为 , ,撞击球与被撞球高度差的理论值为时,被撞球实际击中靶纸的位置由此,若使被撞球击中靶心,撞击球的初始高度应调高至 ,即使得 ,
篇二:碰撞打靶实验报告 碰撞打靶实验报告 碰撞打靶实验仪。
被撞球3个(铁球,铜球,铝球,其中铁球和撞击球质量相等)。 实验目的、意义和要求
目的:了解自然界中物体的碰撞现象。
意义:利用碰撞前的单摆运动以及碰撞后的平抛运动利用已学到的力学定律去解决打靶的实验问题。 要求: 预习实验原理的各个力学规律。
了解整个实验的过程,即从理论值到实际值的过程。 实验前应回答的问题
实验仪底盘为什么要调水平。 由x和y推导出时h0的表达式。
由x,和y计算高度差的公式,进而推导出体系在整个过程中的能量损失δe。 实验内容 完成实验室给出的数据表格。
选做实验——从剩余的两个小球中任选一个(建议做铝球)完成实验。
实验目的:比较被撞球的质量发生变化,或者质量和体积都发生变化时,体系的能量损失会有怎样的变化。 实验报告要求
计算碰撞前后的总能量损失δe。 回答课本p31,p32思考题。
实验现象记录分析,实验感想体会和建议。 参考书籍与材料 相关表格下载
碰撞打靶—表格仅供参考,数据要求记录在报告纸上。 建议问题
老师,碰撞打靶实验最后计算出来能量损耗值,是否还要计算不确定度?如果钢尺和游标卡尺上没有标明“最大误差”或“不确定度限值”,要怎么计算测量长度的不确定度? 本实验没要求计算不确定度,因此没有给出不确定度限值。—高渊2009/10/1909:17 老师,如果x值选择较小,是否会使能量损失百分比增大?
是在具体操作中出现这个疑问吗?如果不是,建议来实验室做一下,看看损失百分比是否增大。—高渊2010/04/1511:12 老师,我觉得测量x的值时是不是可以多打几个点,比如说10个点,由于这些点一般比较密集,所以可以较容易找到这些点的中心,这样就只需要测一次x的值就可以了,然而取三个点然后取平均值的方法个人觉得有些随意,一是取三个点样本太少,可能不具有代表性,二是这三个点每次单独测x时的随意性较大,人为的误差较大,所以我觉得这个方法略有不妥。另外在算撞击球的h时,是不是应该加上0.5d,毕竟在算平抛运动速度时,不需要加0.5d,但是在算h时,就不能不加了,否则h就少了0.5d,误差较大吧?–张子恒
老师,我有一个问题想请教你。因为有一些公式所以不知道怎么上传。请问一下老师的电子邮箱
同学,这个网站首页的通讯录一栏里能找到所有教师和助教的邮箱。—乐永康2012/03/0722:23 书上实验内容必做内容第三步说根据x来估计y值,怎么估计啊?x=vt;y=1/2gt^2,怎么根据x来估计y啊?难道测时间t吗?那这样也太不准了吧,相差一秒就相差5米啊?不懂啊,求指教。。。。。
估计嘛,本就没要求必须达到何种精确程度。一秒很长了,你拿个秒表掐绝对不会有那么大误差的。—高渊2012/05/0717:21 老师好,我想问的也是第5个同学的问题,希望老师能够解答的再详细一点,谢谢。就是实验仪器中并没有给出秒表,所以无法测时间,但是老师回答的是用秒表掐时间,如果说可以用秒表的话,那么第三步测x就没有什么意义了,究竟如何才能根据x测出y?真的不懂,希望老师能指教!再次感谢!—黄禹铭2012/10/2809:13 首先问题的顺序理了一下,上面的问题按时间顺序应该是第五个;至于书上说的估计,由于靶纸能放的x范围有限,y值也就是被撞球的高度调节范围也很有限,一般可以试打几次即可,知道x和y大概取什么数值即可,而不是用x测出y,本实验中x和y都是初始条件;至于秒表的说法,是针对那个同学说的测量时间误差大的疑问,不是真的建议用秒表。—高渊2012/10/2823:10 谢谢老师啦!——黄禹铭2012/10/3022:46 老师,我想请问一下,模拟题中为什么操作完全正确仍然会发生非正碰的情况?还有,调节平衡时上下两个转轴各是什么用呢?
总有视觉误差吧,很难保证绝对正碰;下边一对转轴调节撞击球的摆动轨迹,上边一对转轴调节撞击球对应于被撞球的位置。—高渊2012/06/2501:27 那实验仪器底盘调节水平是为了保证是平抛运动还是保证是正碰呢?—黄一霏2012/06/2418:57 都保证啊。—高渊2012/06/2501:21 老师请问改变高度由h0到h值,物理过程因数据改变已经不是同一个过程,但是计算损失的能量却用了两个不同过程的数据计算,这算不算是系统误差—陈泓宇2012/09/2423:32 用撞击球上升的高度来计算重力势能,近似得出撞击过程中损失的能量,虽然可能有2个或者更多操作过程,但算重力势能的话就只考虑高度的改变,这个计算不带来系统误差。—高渊2012/09/2510:23 老师,我想说,碰撞打靶中,用于释放撞击球的磁铁,在按下开关后,会不会还对铁球有作用力,而这个阻力对球做的负功应该也算是误差吧,在我看来磁铁能吸住球的磁力应该比较大了,那会不会有较大的误差,如果可以改进,是不是可以改进一下电磁铁的吸放情况,就是按下开关,在足够长的时间里会没有磁力,我相信科学家做这个实验,应该不是用的电磁铁来释放小球吧。—-陈泓宇2012/10/907:32 磁力也就是在释放的一瞬间会对小球有作用力,由此产生的误差肯定会有,但是可以分析到。电磁铁方便啊,可以重复使用操作,原先方法好像是用电热丝烧断连接小球与摆绳的胶带纸。同学们有没有什么好方法建议欢迎提出来,我们可以用以改进实验。—高渊2012/10/1511:09 老师,h应该是以球中心为准的吧?不是底部;还有,设置这么一套装置的意义何在呢?可不可以改进装置,避免调试中出现过大误差?(比如把绳牵引撞击球换成让球从斜槽中自由下落,只要保证对心碰撞即可。)—王靖雯2012/11/1622:36 h0一般建议以底部为准,当然以球心为准也可以啊,只要公式随之而调整,也就是考虑是否加上球的半径而已;这个实验设计的最初目的就是要同学自己调整正碰,看看谁细心、耐心,出现状况能否不急躁找出问题所在;基础物理实验都是验证已知物理规律,能否测得精确的结果不是主要目的,所以不会采用特别精确的仪器,实验中和实验所用仪器允许误差比较大的情况出现,但要求能找出误差和问题所在,从而合理分析和解决问题,这也是实验课对同学能力的主要考核方向。—高渊2012/11/1823:34 老师你好,请问能量损失与两球质量差有什么关系呢?我做的铜球损失最大,其次是铝球,最小的是铁球,但是质量差最大的是铝球啊,貌似找不到什么规律,是不是铜球的数据得到的不对啊?—胡蔚萍2012/11/2721:40 能量损失和两球质量差的关系可以参考思考题6,根据两球质量比的变化,传递的能量和总能量的比值也会不一样,但这是理想情况,本实验中由于还有每次调节碰撞中条件的不同,以及摩擦力不同的影响,所以会出现不同的情况,铝球的数据经常是能量损失比较小的,这些都可以具体分析,数据应该没有问题。—高渊2012/11/2808:52篇三:“碰撞打靶”实验中能量损失的分析
内蒙古科技大学 本科毕业论文
题目:碰撞打靶实验中能量损失分析 学生姓名:xxx 学院:物理科学与技术学院 专业:应用物理 班级:08应物 学号:0809810038 指导教师:xxx 二零 一 二年 五月
摘 要
介绍了碰撞打靶实验仪在力学实验中的应用,对实验中的基本原理,实验中所用到的方法,实验过程等进行了阐述,并对实验中所得到的结论进行了分析,发现了质量不同的撞击球对能量损失的影响,同时也分析了空气阻力、摩擦力、非正碰、非弹性碰撞带来的能量损失,这些问题的分析对以后实验的进行提供了一定的帮助。 关键词:
碰撞; 打靶;能量损失 abstract describes the experimental apparatus targeting collision experiments in the application of mechanics, the basic principle of the experiment, the method used in the experiment, the experiment presented in this paper, the experimental conclusions obtained in the analysis, found the quality of different the impact on the energy loss of the ball, but also of the air resistance, friction, non-regular touch, non-elastic collision caused by energy loss analysis of these issues after the experiments carried out provide some help. keywords: collision; shooting; energy loss 引言5 1基本概念? 6 1.1关于碰撞 6 1.2关于动量守恒和能量守恒? 6 1.3关于单摆运动和平抛运动? 6 2碰撞打靶实验能量损失的原理 6 2.1装置介绍及使用方法??? 6 2.1.1装置介绍??? 6 2.1.2使用方法??? 7 2.2碰撞打靶实验数据的测量? 8 3数据记录与处理?? 9 3.1实验中所得到的数据??? 9 3.2对数据的处理??11 3.3误差分析11 3.4对实验结果的分析??? 12 4分析各种能量损失的原因? 12 结论??? 13 参考文献? 14 致谢??? 15 本实验实是物体间的碰撞,是自然界中普遍存在的现象,从宏观物体的一体碰撞到微观物体的粒子碰撞都是物理学中极其重要的研究课题。单摆运动和平抛运动是运动学中的基本内容,能量守恒与动量守恒是力学中的重要概念。本碰撞打靶实验仪研究两个球体的碰撞,以及碰撞前小球的单摆运动和碰撞后被撞球的平抛运动,运用已学到的力学定律去解决打靶的实际问题。并从理论计算与实验结果的差值,求得碰撞前后的能量损失,从而更深入地了解力学原理, 并探讨碰撞中能量损失的诸方面的原因, 是一个较好的设计性研究性物理实验。
实验名称:
探究影响单摆摆动快慢的因素
实验目的:
探究摆长、摆球质量、摆角等因素对单摆摆动快慢的影响。
实验器材:
- 单摆装置
秒表
不同长度的摆线
不同质量的摆球
量角器
实验原理:
单摆的振动周期T与摆长L、重力加速度g和摆球质量m的关系为:T = 2π√(L/g)(在摆角较小且摆球质量可忽略不计的情况下)。因此,理论上摆长是影响单摆摆动快慢的主要因素,而摆球质量和摆角的影响较小。
实验步骤:
1. 使用固定长度的摆线和摆球,测量并记录单摆在一定摆角下的振动周期(连续摆动10次的时间,取平均值)。
2. 改变摆长,重复步骤1,测量并记录不同摆长下的振动周期。
3. 更换不同质量的摆球,保持摆长不变,测量并记录振动周期。
4. 改变摆角,保持摆长和摆球质量不变,测量并记录振动周期。
实验数据:
(此处省略具体数据表格,实际报告中应详细记录每次测量的摆长、摆球质量、摆角、时间等数据)
数据处理与分析:
1. 比较不同摆长下的振动周期,分析摆长对摆动快慢的`影响。
2. 比较不同质量摆球下的振动周期,分析摆球质量对摆动快慢的影响。
3. 比较不同摆角下的振动周期,分析摆角对摆动快慢的影响。
实验结论:
通过本次实验,我们发现摆长是影响单摆摆动快慢的主要因素。随着摆长的增加,振动周期变长,摆动变慢;反之,摆长减小时,振动周期变短,摆动变快。而摆球质量和摆角对摆动快慢的影响较小,在实验误差范围内可以忽略不计。
实验反思:
在实验过程中,我们注意到摆角的控制对实验结果有一定影响。当摆角过大时,单摆的振动将不再满足简谐振动的条件,导致实验结果出现偏差。因此,在未来的实验中,我们应更加注意控制摆角的大小,以确保实验结果的准确性。同时,我们还应考虑其他可能影响实验结果的因素,如空气阻力等,并采取相应的措施进行修正。
物理单摆优秀教案
一、教学目标:
通过本节课的复习,进一步熟悉有关单摆的知识,能够熟练利用单摆的知识解决实际问题。
二、重点难点:
1、理解单摆在摆角很小(如不大于10)情况下,其振动是简谐运动。
2、单摆模型的应用。
三、教学方法:
复习提问,课件演示,讲练结合
四、教学过程
(一)知识回顾
(1)什么是单摆?
(2)单摆振动的回复力来源于什么?单摆做简谐运动的条件是什么?
(3)知道单摆的周期和什么有关?单摆振动的周期公式怎样?
(4)演示课件《单摆》,增加学生的直观感受。
(二)例题精讲
例1. 如下图所示,用两根长度都为L的绳线悬挂一个小球A,绳与水平方向的夹角为α,使球A垂直于纸面作摆角小于5°的摆动,当它经过平衡位置的 瞬间,另一小球B从A球的正上方自由下落,并能击中A球,则B球下落的高度
是。
分析解答:球A垂直于纸面作摆角小于5°的摆动,球A的运动是简谐振动,
摆长为Lsinα,周期为T?2?0l。球B做自由落体运动,下落时间为t,下落g
高度h=12gt。当球A经过平衡位置的瞬间,B球开始下落,B球若能击中A球,B球下落时2
间应为A球做简谐振动半周期的整数倍,即t=nT/2。则n?Lsin2h? 解出B球距Agg
球的高度h=122npLsinα(n=1、2、3…) 2
点评:振动的周期性表现在它振动的状态每隔一个周期的时间重复出现,因此在讨论某一状态出现的时间时,要注意它的多值性,并会用数学方法表示。如本题中单摆小球从平衡位置出发再回到平衡位置的时间是半周期整数倍的一系列值。
例2. 若单摆的摆长不变,摆角小于5°,摆球质量增加为原来的4倍,摆球经过平衡位置的速度减小为原来的1/2,则单摆的振动( )
A. 频率不变,振幅不变B. 频率不变,振幅改变 C. 频率改变,振幅改变D. 频率改变,振幅不变
分析解答:单摆的周期T=,与摆球质量和振幅
无关,只与摆长L和重力加速度g有关。当摆长L和重力加速
度g不变时,T不变,频率f也不变。选项C、D错误。单摆
振动过程中机械能守恒。如图5所示,摆球在极限位置A的重力势能等于摆球运动到平衡位置的动能,即mgL(1-cosθ)= mυ /2,υ=
增大,α减小,振幅A减小,选项B正确。
(三) 课堂练习
1、单摆的周期在下列何种情况时会增大
A、增大摆球质量B、减小摆长 C、把单摆从赤道移到北极 D、把单摆从海平面移到高山
2、甲乙两单摆,同时做简谐运动,甲完成10次全振动时,乙完成25次全振动,若乙的摆长为1m,则甲的`摆长为__________。
3、一单摆摆长为98cm,t=0时开始从平衡位置向右运动,则当t=1.2s时,下列关于单摆运动的描述正确的是()
A.正向左做减速运动,加速度正在增大B.正向左做加速运动,加速度正在减小
C.正向右做减速运动,加速度正在增大D.正向右做加速运动,加速度正在增大
(四) 能力训练
4、某学生利用单摆测定本地的重力加速度,他考虑了若干方案,其中正确的是()
A、测出单摆的振幅,摆长和振动周期
B、测出单摆的摆角、摆球的质量和振动的振幅
C、摆角只要小于5°,其实际角度不必测量,但需测出单摆的摆长和振动周期
D、必须测出摆角大小,摆长和振动周期
5、某学生利用单摆测定重力加速度,测得摆球的直径是2.0cm,悬线长是99.0cm,振动30次所需时间为60.0s,则测得的重力加速度值等于__________cm/s。 22,当υ减小为υ/2
时,
6、一单摆的摆长为78.1cm,当地的重力加速度为9.81m/s,试求这个单摆的周期。如果将这个单摆放到月球上,月球的重力加速度是地球的0.16倍,其他条件不变,那么这个单摆在月球上的周期变为多少?
(五) 学习本节内容应注意的问题:
①周期T与振幅、摆球质量无关,只与摆长L和所处地点重力加速度g有关。 ②单摆的摆长L是指悬挂点到摆球球心间的距离。 2
参考答案
1、D
2、6.25m 3、A 4、C
5、986.06、2s,5s
弹性碰撞演示实验实验报告
姓名:杨倩倩学号:11122290教师:戴晔
[实验名称] 弹性碰撞演示仪
[实验目的]
本次实验用于演示正碰撞和动量守恒定律,形象地显现弹性碰撞的情形。
[实验原理]
动量守恒定律 m1v1+ m2v2 = m1v1` +m2v2`
由动量守恒定律可知,如果正碰撞的两球,碰前速度分别为v1和v2,碰撞后的速度分别为v1`和v2`,质量分别为m1和m
2[实验器材]
1、底座、支架、钢珠(七个,且大小、质量相等)拉线、调节螺丝
2、技术指标:
钢球质量:m=7*0.2kg
直径:d=7*35mm
拉线长度:l=550mm
[实验操作与现象]
1、调整仪器,使得七个钢球的球心位于同一水平线上。
2、将仪器一端的一个钢球拉起来后,松手,则钢球正碰下一个钢球,末端的一个钢球弹起,继而,又碰下一个钢球,另一端的钢球弹起,循环不已,中间的五个不动。
3、拉起仪器一端的两个钢球重复上述操作,结果另一端的两个钢球弹起,中间的三个不动。
4、改变拉起钢球的数量重复上述操作,观察结果,每次会有另一端的相同数量的钢球弹起。
[注意事项]
操作前一定要使七个钢球的球心位于同一水平线上,否则现象不明显。
实验名称:
探究影响单摆摆动快慢的因素
实验目的:
1. 探究摆长对单摆摆动快慢的影响。
2. 通过实验验证摆长越长,摆动越慢;摆长越短,摆动越快的规律。
实验仪器:
单摆装置
秒表(精度0.01s)
米尺(精度0.1cm)
实验原理:
单摆的振动周期T与摆长L和重力加速度g有关,当重力加速度g恒定时,T仅与L的平方根成正比。因此,改变摆长L将直接影响单摆的振动周期,从而影响其摆动快慢。
实验步骤:
1. 调节单摆装置,使其沿铅直方向稳定。
2. 使用米尺测量初始摆长L1,并记录。
3. 将摆球拉至一侧(摆角小于5°),然后释放,使用秒表记录摆球在10秒内的摆动次数n1。
4. 改变摆长L(例如缩短或延长一定长度),重复步骤3,测量不同摆长下的摆动次数n。
5. 记录每次实验的摆长L和对应的`摆动次数n,并计算各摆长下的平均周期T(T = 10/n)。
实验数据:
(此处省略具体数据表格,可根据实验实际情况填写)
数据处理与分析:
1. 计算各摆长下的平均周期T。
2. 比较不同摆长下的平均周期T,观察其变化趋势。
3. 根据实验结果验证摆长越长,摆动越慢;摆长越短,摆动越快的规律。
实验结论:
通过实验数据的处理与分析,我们发现摆长对单摆摆动快慢有显著影响。当摆长增加时,摆动周期变长,即摆动变慢;当摆长减小时,摆动周期变短,即摆动变快。这一实验结果与理论预期相符,验证了摆长与摆动快慢之间的关系。
实验反思:
在实验过程中,我们需要注意控制其他可能影响实验结果的因素,如摆角大小、空气阻力等。此外,测量时间时也需要保持准确性和一致性,以提高实验结果的可靠性。同时,我们还可以尝试探究其他因素对单摆摆动快慢的影响,如摆球质量、摆线材质等。
单摆研究的论文
[摘要]单摆演示实验仪是中学物理教学中的常用实验仪。由于摩擦等外界阻力的作用,普通单摆的小球摆动一段时间后会停下来。永不停息单摆是用间歇电磁力来周期地加速摆球的特殊单摆,是综合力学原理和电磁学原理进行创新研制而成的。
[关键词]单摆间歇电磁力周期加速不停息摆动
(一)原理和设计构想
大学物理演示实验中,单摆实验仪器的摆角一般应小于5度。从力学原理上讲,单摆在不受外界影响的情况下,应以简谐振动的方式永不停息地摆动下去,根据受力分析,作为单摆的小球,重力沿绳子方向的分力和绳子弹力的合力提供小球做圆周运动的向心力,沿运动轨迹切线方向的分力不断做功实现动能和势能的相互转化,导致小球做周期性不停止的。摆动;然而,实际上,由于受到各种阻力因素的影响,单摆实际上是在做阻尼振动,阻力做功消耗了摆球的机械能,最终使摆球停止在平衡位置。甚至合外力不全在竖直平面内时,还会作其他摆动,如做圆锥摆动等。
经过试验探索发现,用周期等于单摆摆动周期的间歇电磁力来驱动单摆时,磁场可以补充摆动过程中损失的能量,致使单摆永不停息地摆动下去,并且还发现本仪器兼有傅科摆的演示效果,即摆动到一定的时间后可明显观察到由于地球自转产生的摆平面出现的偏转角。
(二)实验仪电路及工作原理
1.实验仪的电路组成。
本实验仪电器控制电路包括两个电路部分:1-弱电控制单元,2-电磁力驱动单元,如图1所示。
1-弱电控制单元的组成:铜环与电磁继电器串联后接入到12V直流电路中;
2-电磁力驱动单元的组成:电磁铁的电磁线圈与开关S1、电磁继电器的触头和指示灯顺序串联后,接入220V的交流电路中。
2.其工作原理是:闭合开关S1,同时使摆球摆动起来。在每个摆动周期内,球在两个最高点时,吊球的铜丝与铜环接触的瞬间电磁继电器接通,使电磁铁通电产生一个瞬时的磁场力。当小球离开最高点时,磁力随即消失,这样使得小球在每次回摆时受到外加电磁力的驱动,获得补充能量来克服外界阻力产生的影响,从而使小球永不停息地摆动下去。电路指示灯工作过程是,开关S1闭合,电磁继电器接通,电磁铁回路接通,指示灯亮;否则,指示灯熄灭。
(三)实验仪结构示意图
实验仪结构示意图如图2所示:(1)12V直流电源;(2)12V电源接线柱;(3)工作指示灯;(4)交流电源接线柱;(5)保险丝;(6)带指示灯开关;(7)单摆小球;(8)铜丝制摆线;(9)铜环;(10)固定架;(11)导线;(12)底座。
实验仪线路连接:直流电源的正负接线柱接装置的两个接线柱,电源接线柱接220V交流电。
(四)功能特点及效果分析
1.实验仪的功能特点。
(1)集“单摆演示、电磁力驱动演示、傅科摆演示和弱电控制强电演示”于一体,且演示效果显著。
(2)集“力、电、磁”知识于一身,知识含量丰富,趣味性强,能很好地激发同学们探索科学的兴趣。是一种很好的“综合性、探索性、创新性”演示实验。
(3)采用低压弱电控制高压强电,把强电路放在装置内部,低压控制电路置于操作区,使实验仪器具有很好的安全性。
2.实验仪注意事项及演示效果分析。
(1)实验开始时最好在铜丝上镀一层锡,这样铜丝与铜环的接触效果会更好,实验现象的明显度也会大大提高。
(2)换重一些摆球不仅会使接触效果增强,还会增加实验现象的明显度。
(3)每个周期内,铜丝与铜环接触两次,电磁继电器的衔铁也将被吸合、释放两次,指示灯也同步闪亮两次、演示效果明显。
实验二 碰撞实验报告
14 级软件工程班
候梅洁 1 404702 1 【 实验目得 】
1、掌握气垫导轨得水平调整、光电门及电脑通用计数器得使用。
2、学会使用物理天平.3.用对心碰撞特例检验动量守恒定律。
4、了解动量守恒定律与动能守恒得条件。
碰撞前后得动量关系为: mu=(m+m)v
动能变化为: ΔE=1/2(m+m)v-1/2mu 【实验步骤】
1、用物理天平校验两滑块得(连同挡光物)得质量m 及m,经测量 m=136、60g、m=344、02g 2.用游标卡尺测出两挡光物得有效遮光宽度,本实验中Δs=Δs=5、00cm 3.将气垫导轨调水平。(1)粗调:调节导轨下得三只底脚螺丝,使导轨大致水平(观察导轨上得气泡,若气泡位于最中央,说明已调平)。
(2)静态调平:接通气源,将滑块放在导轨上,这时滑块在导轨上自由运动,调节导轨得单脚底螺丝,使滑块基本静止(不会一直向单一方向运动) (3)动态调平:将两个安装在到导轨上得光电门相距60cm 左右.在滑块上安放u型挡光片,接电脑通用计数器得电源,打开电源开关,将电脑计数器功能置于“s2”挡。轻轻推动滑块,分别读出遮光片通过两个光电门得时间Δt 与Δt,它们不等,则反复强调单脚螺丝,使它们相差不超过千分之几秒,此时可认为气垫导轨基本水平。
4、完全弹性碰撞
适当放置光电门得位置,使它能顺利测出两个滑块碰撞前后得速度,并在可能得情况下,使两个光电门得距离小些。每次碰撞时,大滑块得速度不要太大,让两个滑块完全碰撞两次,分别记录每次得滑块得速度并结算出:(注意速度方向) 动量得变化大小C=(mv+mv)/(mu+mu) 恢复系数 e=(v—v)/(u—u)
(v—v 为两物体碰撞后相互分离得相对速度,u-u则为碰撞前彼此接近得相对速度)
【注意事项】
1、严格按照在操作规范使用物理天平;2.严格按照气垫导轨操作规则; 3.给滑块速度时速度要平稳,不应使滑块产生摆动;挡光框应与滑块运动方向一致,且其遮光边缘应与滑块运动方向垂直;
4、挡光框应与滑块之间应固定牢固,防止碰撞时相对位置改变,影响测量精度。【思考题】
1、动量守恒定律成立得条件就是什么?
系统所受得外力之与为 0 2、滑块距光电门近些好还就是远些好?两光电门间近些好还就是远些好?为什么?
滑块距光电门近些好,两光电门间近些好,因为气垫导轨上仍然就是存在微小得摩擦得,滑块与光电门之间、两光电门之间得距离尽可能得小,可以减小实验误差。
【实验结果与分析】
( ( 均以轻滑块得初速度�
本次实验让我们熟悉了物理天平,掌握气垫导轨得水平调整、光电门及电脑通用计数器得使用。同时通过自己得操作利用对心碰撞验证了动量守恒定律,从而使我们更加深入地理解力学原理,实验中遇到了问题,我们经过努力分析后解决问题,让我们学会了许多。
──研究性学习课堂实录山东省昌乐县第二中学 张东升
【教材分析】
“单摆”选自高二《物理》第八章“机械振动机械波”的第二节,在学生认识了简谐运动,掌握了简谐运动的基本特征之后,为进一步形成概念,掌握规律,教材特安排了简谐运动的典型实例──“单摆”这节课。
【教学过程】
一、课题导入
师:我们学习了简谐运动及其运动特点(展示简谐运动的课件)。今天,我们来共同研究简谐运动的一个典型实例──单摆。
(出示单摆,介绍其构造;说明在摆角很小时,单摆的运动可视为简谐运动。
演示实验:单摆的运动。
演示实验:两摆长不等的单摆同时运动。)
师:同学们通过观察,上述两个不同的单摆其振动周期一样吗?
生:不一样。
师:那么,单摆的振动周期跟哪些因素有关呢?这就是本节课所要研究的主要问题。
二、新课教学
1.猜想
师:同学们从单摆的构造可猜想一下,单摆的振动周期可能跟哪些因素有关?
(同学们经过短暂热烈的讨论,提出了可能的三个因素:①摆长;②摆球的质量;③摆角。)
2.优化方案
师:下面同学们每四人一组,自主实验,进行探究。实验前,应先思考一下方案的设计,便于我们科学地进行实验。
(学生思考)
生:老师,验证振动周期与重力加速度是否有关,我们想不到有什么可行的办法。
师:同学们安静!刚才这位同学提的问题很好,大家不妨先考虑一下如何解决这个问题?
(学生又展开了热烈的讨论。最后经过争论,一致同意采纳李福田同学的建议,制作一个“磁性单摆”,用磁铁对摆球向下的引力来模拟重力加速度的变化。)
师:李福田同学的方案很独特,我非常感兴趣。为节约时间,提高效率,你们在分组实验的基础上,再进行分工,共同来完成这一科研课题。
3.分组实验
学生分组实验。教师边指导,边参与同学们的实验。
4.数据处理
在数据处理过程中,同学们遇到了难题,他们面对着一堆数据,不知所措。教师适时进行了点拨。
师:该实验的数据处理的确有一定的难度,同学们不妨尝试一下利用图像来寻求物理量间的关系,这实际上也是科学研究的一种重要方法。比如作t—l、t—l2、t—等的函数图像。
生:周期与摆长的关系可利用图象来寻找,但周期与加速度的关系却无法定量分析,怎么办?
师:现有的实验条件是无法办到的,那就只能定性地分析一下了,如果同学们有什么好的办法,可提出来共同探讨。
(同学们忙碌地处理数据。一会儿,有一组同学惊喜地喊道:“找到了,找到了!”他们拿着处理的数据情不自禁地站了起来,吸引了同学们的眼光。该组同学第一个发现了t—的图像近似为一条直线!不简单!)
5.成果展示
找出几位同学代表,用投影仪轮流展示他们的实验思路、实验过程、数据处理、实验结论以及实验中应该注意的问题和减小误差的方法等。
成果展示中,李福田同学的“磁性单摆”虽然只能定性地演示单摆的摆动周期与重力加速度的关系,但却实实在在地吸引了同学们的眼球。
6.阅读与练习
学生阅读课文,形成概念,掌握规律。阅读完课文后,及时练习课后练习的1~3题,找两位同学投影他们的练习作业,师生共同点评。
7.教学总结
①鼓励后进,表扬先进。
②投影单摆的振动周期公式。
8.作业布置
设计某一方案定量验证振动周期与重力加速度的关系。
点评:
以创新精神和实践能力为主要特点的研究性学习,使得传统教学中教师与学生的角色发生了根本性的变化,体现了以学生为本的教学理念。这节课,学生是科研者,他们亲身实践科学研究的思想和方法,体会到了科学研究的艰辛与欢乐,这正是研究性学习的基本理念──人文性的体现。(点评者:孟庆利)
尊敬的各位老师、亲爱的同学们
你们好!今天我的说课题目是“单摆”,我将从学情分析、教材分析、教学法分析、教学媒体设计和教学程序设计等几个方面进行说明。
一、学情分析
单摆实验报告优秀14篇
二、教材分析
1、作用和地位
单摆是人教版物理教材选修3—4第十一章机械运动第四节中的内容。在本节开始学习之前已经学习了简谐运动的描述和回复力,为这节单摆的研究打下了基础。摆动是常见的一种机械振动,单摆就是研究这类运动的一个物理模型,是简谐运动的实例应用,现实生活中的许多摆动可以被近似地看成单摆运动,研究单摆运动规律将直接有助于我们解决这类实际问题。并且为下一节外力作用下的振动的研究以及以后机械波的研究打下了基础,具有承上启下的作用。
2、教学目标
2.1知识与技能目标
2.1.1知识目标
(1)知道什么是单摆;
(2)理解单摆运动回复力的来源以及摆角很小时单摆的振动是简谐运动;
(3)知道单摆的周期跟什么因素有关,了解单摆的周期公式,并能用来进行有关的计算;
(4)知道用单摆可测定重力加速度。
2.1.2能力目标
通过对“单摆”的研究,培养学生的观察实验能力、思维能力、收集处理数据能力、分析归纳能力等。
2.2过程与方法目标
2.2.1过程目标
(1)通过单摆的教学,知道单摆是一种理想化的系统;
(2)通过单摆运动产生的回复力的研究,知道单摆运动是一种简谐运动;
(3)通过研究单摆的周期与摆长的关系,掌握其研究过程的影响因素。
2.2.2方法目标
(1)学会用理想化的方法建立物理模型;
(2)体会用近似处理方法来解决物理问题;
(3)掌握用控制变量的方法来研究物理问题。
2.3情感态度与价值观目标
通过介绍傅科和惠更斯在研究单摆运动中的贡献,培养学生善于观察发现的能力,激发学生再发现、再创造的意识以及培养学生的创新能力。培养学生实事求是的科学探究精神,培养学生对物理的学习和探究兴趣,逐步培养学生正确的辩证唯物主义认识观。
3、教学重点和难点
3.1教学重点
(1)什么叫做单摆;
(2)单摆振动的周期与什么因素有关;
(3)学会用单摆测定重力加速的。
3.2教学难点
确定单摆是简谐运动的研究以及对回复力的分析。
三、教学法分析
1、教法
(1)关于单摆的构成的教学——采用演示教学法进行;
(2)关于单摆的振动,单摆回复力的教学——采用分析归纳法、推理法进行;
(3)关于单摆在摆角很小时做简谐运动的证明——采用数学公式推导法进行;
(4)关于单摆周期的教学——采用实验探究的方法进行。
2、学法
对学生来说,重要的是让他们学会学习,教师是起一个引导作用。教师的目的在于让他们掌握获取新知识的过程和方法,养成良好的科学素养。因此在学习过程中,要让学生主动参与、乐于探究、善于思考、勤于动手,注重搜集和处理信息,获取新知识学会解决问题。通过学生自己参与进课堂探讨中去,掌握单摆运动的规律。
四、教学媒体分析
通过多媒体仿真演示实验,揭示什么是单摆以及探究单摆的运动。播放单摆运动的动画,观察其运动规律。再演示以下三种情况?都在小偏角情况下,使两摆的振幅不同;?两单摆的摆长不同;?两单摆的质量不同。比较其周期,探究单摆的振幅、摆长、质量对周期各有什么影响?得出结论。使用仿真演示实验使学生便于理解与记忆。
五、教学程序设计
通过对简谐运动的复习及对生活中摆钟的了解引入新课单摆。播放一个单摆模型,让学生自己总结单摆的特点,老师同时引导。并告诉他们单摆只是一个理想化模型,这种理想化物理思想用到很多地方,便于观察和分析。然后老师播放几个模型,让学生判断哪个是单摆?为什么?生活中是否存在近似单摆的运动?加深学生对单摆模型的理解和认识。
在明白什么是单摆的情况下,提出问题。单摆运动时,做的是什么运动?它与我们之前学过的简谐运动有什么关系?进而引导学生回顾前面学习简谐运动的判断方法,通过该方法是否能判断单摆做的
是简谐运动。
引导学生分析单摆的回复力。当单摆处于最低点时,通过分析,判断出,这就是它的平衡位置,合外力为零。当小球偏离平衡位置时,对小球再进行受力分析,得到错误!未找到引用源。,这里得到这个前提是偏角小于或等于错误!未找到引用源。,这里采用近似思想sin??x
l,所以单摆的回复力F??mg。并告诉学生这种思想运xl
用到很多方面,引导学生自己学会这种方法。通过对小球所受的回复力满足与其偏离平衡位置的大小成正比,并且指向平衡位置,得到单摆做简谐运动。
提出单摆周期的概念。再次提出问题,影响单摆周期的因素有哪些?让同学们提出假设,再在老师的引导下,播放仿真实验。演示以下三种情况?都在小偏角情况下,使两摆的振幅不同;?两单摆的摆长不同;?两单摆的质量不同。比较其周期,探究单摆的振幅、摆长、质量对周期各有什么影响?在老师的引导下,与学生一起总结其规律,得出结论,单摆的振动周期与摆球质量无关,在振幅较小时与振幅无关,与摆长有关,摆长越长,周期也越长。最终得出惠更斯确定的单摆的周期公式T?2?
哪些应用?
为加强巩固本节的内容,布置本节习题1、2
六、板书设计
我将黑板分为四部分,前三部分为主板书,右方最后一部分为副板书,用于计算推导等。 l。再次提出问题,运用单摆周期公式可以有g
实验报告
课程名称:微机原理与接口技术
指导老师:李素敏
学生姓名:
学号:
专业: 自动化
日期:2014-04-10 地点:理工楼603
实验二
1、 实验目的和要求
① 掌握keil软件和STC-ISP 软件的使用方法 ② 熟悉发光管的工作原理 ③ 通过编程体验发光管的延时闪烁及移位等功能
2、 主要仪器设备
PC机
单片机学习开发套件(型号:89C52RC)
3、 实验内容
①实验内容1:第一个发光管以间隔200ms闪烁
源程序:
//宏定义
main() {
while(1) { P1=0xfe; delay(200); P1=0xff; delay(200); } } void delay(uint z) //延时函数,z的取值为这个函数的延时ms数 {
uint x,y; for(x=z;x>0;x--)
for(y=110;y>0;y--);
一台一件
}
实验结果说明:要使发光管闪烁,只需设置合适的时间延时即可。
②实验内容2 : 8个发光管由上至下间隔1s流动,其中每个管亮500ms,灭500ms,亮时蜂鸣器响,灭时关闭蜂鸣器,一直重复下去。
源程序:
#include
//宏定义
unsigned char a,b,k,j;
//定义五个字符变量 sbit beep=P2^3; // 定义蜂鸣器的接口
void delay(uint z) //延时函数,z的取值为这个函数的延时ms数 {
uint x,y; for(x=z;x>0;x--)
for(y=110;y>0;y--); }
void main() {
k=0xfe; //先给k一个初值11111110等待移位 while(1) {
delay500ms();
beep=0; //打开蜂鸣器
delay500ms(); //让它响500ms
beep=1; //关闭蜂鸣器
j=_crol_(k,1); //把k循环左移一位
k=j; //把移完的值再送给k
P1=j; //同时把值送到P1口点亮发光二极管 } //再次循环 }
实验结果说明:在此程序中用到了_crol_(k,l)函数,此函数的功能在于循环移位,在每次发光管闪烁相应时间后左移一位,把移完的值再送到P口,点亮对应的发光管。这样循环往复,达到发光管流动的效果。
③实验内容3 :用8个发光管演示出8位二进制数累加过程,即用8个二极管表示8个二进制位(亮为1,灭为0),依次以二进制形式显示0,1,2,……255。
源程序: #include
//宏定义defineuchar unsigned char //宏定义
void delay(uint z) //延时函数,z的取值为这个函数的延时ms数, {
uint x,y; for(x=z;x>0;x--)
for(y=110;y>0;y--); } void main()
//主函数 {
} uchar a; while(1)
//大循环 {
} a++; P1=~a; delay(200);
实验结果说明:在此定义一个无符号字符变量a,a的值进行累加,但是由于表示的二进制数要求亮为1,灭为0,与发光管的0亮1灭正好相反,所以将a的计数取反并设置相应延时,重复此过程就得到了在发光管上显示八位二进制数的累加过程。
④实验内容4 :间隔300ms第一次一个管亮流动一次,第二次两个管亮流动,依次到8个管亮,然后重复整个过程。
源程序:
void delay(uint z) //延时函数,z的取值为这个函数的延时ms数 {
uint x,y; for(x=z;x>0;x--)
for(y=110;y>0;y--); } void main() //主函数 { uchar a,i,j; while(1) //大循环
} {
} a=0xfe; //赋初值
for(j=0;j<8;j++) { for(i=0;i<8-j;i++) //左移
} {
P1=a; //点亮小灯
delay(300); //延时300毫秒
a=_crol_(a,1); //将a变量循环左移一位
} a=_crol_(a,j); //补齐,方便下面的左移一位 P1=0xff; //全部关闭
a=a<<1; //左移一位让多一个灯点亮
4、心得体会:此次实验中练习较多的就是闪烁和移位,在编程过程中,设置闪烁的时间必须达到人眼正常观察的要求,这就需要计算合适的闪烁时间,不停的尝试,最终选择适宜观察的时间间隔。发光管的循环移位时调用_crol_(k,l)函数
可以大大简化编程的行数。所以熟悉单片机的函数库,可以方便我们编程。所以在以后的实验中还得继续学习这个函数库,从而更轻松的完成实验内容。
碰撞打靶实验报告
碰撞打靶实验仪。
被撞球3个(铁球,铜球,铝球,其中铁球和撞击球质量相等)。 实验目的、意义和要求
目的:了解自然界中物体的碰撞现象。
意义:利用碰撞前的单摆运动以及碰撞后的平抛运动利用已学到的力学定律去解决打靶的实验问题。
要求: 预习实验原理的各个力学规律。
了解整个实验的过程,即从理论值到实际值的过程。 实验前应回答的问题
实验仪底盘为什么要调水平。 由x和y推导出时h0的表达式。
由x,和y计算高度差的公式,进而推导出体系在整个过程中的能量损失ΔE。 实验内容
完成实验室给出的数据表格。
选做实验——从剩余的两个小球中任选一个(建议做铝球)完成实验。
实验目的:比较被撞球的质量发生变化,或者质量和体积都发生变化时,体系的能量损失会有怎样的变化。
实验报告要求
计算碰撞前后的总能量损失ΔE。 回答课本P31,P32思考题。
实验现象记录分析,实验感想体会和建议。 参考书籍与材料 相关表格下载
碰撞打靶—表格仅供参考,数据要求记录在报告纸上。 建议问题
老师,碰撞打靶实验最后计算出来能量损耗值,是否还要计算不确定度?如果钢尺和游标卡尺上没有标明“最大误差”或“不确定度限值”,要怎么计算测量长度的不确定度?
本实验没要求计算不确定度,因此没有给出不确定度限值。—高渊2009/10/1909:17 老师,如果x值选择较小,是否会使能量损失百分比增大?
是在具体操作中出现这个疑问吗?如果不是,建议来实验室做一下,看看损失百分比是否增大。—高渊2010/04/1511:12 老师,我觉得测量X的值时是不是可以多打几个点,比如说10个点,由于这些点一般比较密集,所以可以较容易找到这些点的中心,这样就只需要测一次X的值就可以了,然而取三个点然后取平均值的方法个人觉得有些随意,一是取三个点样本太少,可能不具有代表性,二是这三个点每次单独测X时的随意性较大,人为的误差较大,所以我觉得这个方法略有不妥。另外在算撞击球的h时,是不是应该加上0.5D,毕竟在算平抛运动速度时,不需要加0.5D,但是在算h时,就不能不加了,否则h就少了0.5D,误差较大吧?–张子恒
一般至少打5个点,根据落点情况再适当多打,取落点中心的话似乎也是比较随意的,鉴于这个实验系统误差还是比较大的,所以你的方法可行,但并不一定能提高多少精度;对于h0的计算,如果Y也是以球的底部到底盘距离为准的话,那么h0是不用加上球半径的.—高渊2011/11/0110:36 老师,我有一个问题想请教你。因为有一些公式所以不知道怎么上传。请问一下老师的电子邮箱
同学,这个网站首页的通讯录一栏里能找到所有教师和助教的邮箱。—乐永康2012/03/0722:23 书上实验内容必做内容第三步说根据x来估计y值,怎么估计啊?x=vt;y=1/2gt^2,怎么根据x来估计y啊?难道测时间t吗?那这样也太不准了吧,相差一秒就相差5米啊?不懂啊,求指教。。。。。
估计嘛,本就没要求必须达到何种精确程度。一秒很长了,你拿个秒表掐绝对不会有那么大误差的。—高渊2012/05/0717:21 老师好,我想问的也是第5个同学的问题,希望老师能够解答的再详细一点,谢谢。就是实验仪器中并没有给出秒表,所以无法测时间,但是老师回答的是用秒表掐时间,如果说可以用秒表的话,那么第三步测x就没有什么意义了,究竟如何才能根据x测出y?真的不懂,希望老师能指教!再次感谢!—黄禹铭2012/10/2809:13 首先问题的顺序理了一下,上面的问题按时间顺序应该是第五个;至于书上说的估计,由于靶纸能放的X范围有限,Y值也就是被撞球的高度调节范围也很有限,一般可以试打几次即可,知道X和Y大概取什么数值即可,而不是用X测出Y,本实验中X和Y都是初始条件;至于秒表的说法,是针对那个同学说的测量时间误差大的疑问,不是真的建议用秒表。—高渊2012/10/2823:10 谢谢老师啦!——黄禹铭2012/10/3022:46 老师,我想请问一下,模拟题中为什么操作完全正确仍然会发生非正碰的情况?还有,调节平衡时上下两个转轴各是什么用呢?
总有视觉误差吧,很难保证绝对正碰;下边一对转轴调节撞击球的摆动轨迹,上边一对转轴调节撞击球对应于被撞球的位置。—高渊2012/06/2501:27 那实验仪器底盘调节水平是为了保证是平抛运动还是保证是正碰呢?—黄一霏2012/06/2418:57 都保证啊。—高渊2012/06/2501:21 老师请问改变高度由h0到h值,物理过程因数据改变已经不是同一个过程,但是计算损失的能量却用了两个不同过程的数据计算,这算不算是系统误差—陈泓宇2012/09/2423:32 用撞击球上升的高度来计算重力势能,近似得出撞击过程中损失的能量,虽然可能有2个或者更多操作过程,但算重力势能的话就只考虑高度的改变,这个计算不带来系统误差。—高渊2012/09/2510:23 老师,我想说,碰撞打靶中,用于释放撞击球的磁铁,在按下开关后,会不会还对铁球有作用力,而这个阻力对球做的负功应该也算是误差吧,在我看来磁铁能吸住球的磁力应该比较大了,那会不会有较大的误差,如果可以改进,是不是可以改进一下电磁铁的吸放情况,就是按下开关,在足够长的时间里会没有磁力,我相信科学家做这个实验,应该不是用的电磁铁来释放小球吧。—-陈泓宇2012/10/907:32 磁力也就是在释放的一瞬间会对小球有作用力,由此产生的误差肯定会有,但是可以分析到。电磁铁方便啊,可以重复使用操作,原先方法好像是用电热丝烧断连接小球与摆绳的胶带纸。同学们有没有什么好方法建议欢迎提出来,我们可以用以改进实验。—高渊2012/10/1511:09 老师,h应该是以球中心为准的吧?不是底部;还有,设置这么一套装置的意义何在呢?可不可以改进装置,避免调试中出现过大误差?(比如把绳牵引撞击球换成让球从斜槽中自由下落,只要保证对心碰撞即可。)—王靖雯2012/11/1622:36 h0一般建议以底部为准,当然以球心为准也可以啊,只要公式随之而调整,也就是考虑是否加上球的半径而已;这个实验设计的最初目的就是要同学自己调整正碰,看看谁细心、耐心,出现状况能否不急躁找出问题所在;基础物理实验都是验证已知物理规律,能否测得精确的结果不是主要目的,所以不会采用特别精确的仪器,实验中和实验所用仪器允许误差比较大的情况出现,但要求能找出误差和问题所在,从而合理分析和解决问题,这也是实验课对同学能力的主要考核方向。—高渊2012/11/1823:34 老师你好,请问能量损失与两球质量差有什么关系呢?我做的铜球损失最大,其次是铝球,最小的是铁球,但是质量差最大的是铝球啊,貌似找不到什么规律,是不是铜球的数据得到的不对啊?—胡蔚萍2012/11/2721:40 能量损失和两球质量差的关系可以参考思考题6,根据两球质量比的变化,传递的能量和总能量的比值也会不一样,但这是理想情况,本实验中由于还有每次调节碰撞中条件的不同,以及摩擦力不同的影响,所以会出现不同的情况,铝球的数据经常是能量损失比较小的,这些都可以具体分析,数据应该没有问题。—高渊2012/11/2808:52
【实验目得】
1、掌握气垫导轨得水平调整、光电门及电脑通用计数器得使用。
2、学会使用物理天平
3、用对心碰撞特例检验动量守恒定律。
4、了解动量守恒定律与动能守恒得条件。
碰撞前后得动量关系为:mu=(m+m)v
动能变化为:ΔE=1/2(m+m)v-1/2mu
【实验步骤】
1、用物理天平校验两滑块得(连同挡光物)得质量m及m,经测量m=136.60g、m=344.02g
2、用游标卡尺测出两挡光物得有效遮光宽度,本实验中Δs=Δs=5.00cm
3、将气垫导轨调水平。
(1)粗调:调节导轨下得三只底脚螺丝,使导轨大致水平(观察导轨上得气泡,若气泡位于最中央,说明已调平)。
(2)静态调平:接通气源,将滑块放在导轨上,这时滑块在导轨上自由运动,调节导轨得单脚底螺丝,使滑块基本静止(不会一直向单一方向运动)
(3)动态调平:将两个安装在到导轨上得光电门相距60cm左右。在滑块上安放u型挡光片,接电脑通用计数器得电源,打开电源开关,将电脑计数器功能置于“s2”挡。轻轻推动滑块,分别读出遮光片通过两个光电门得时间Δt与Δt,它们不等,则反复强调单脚螺丝,使它们相差不超过千分之几秒,此时可认为气垫导轨基本水平。
4、完全弹性碰撞
适当放置光电门得位置,使它能顺利测出两个滑块碰撞前后得速度,并在可能得情况下,使两个光电门得距离小些。每次碰撞时,大滑块得速度不要太大,让两个滑块完全碰撞两次,分别记录每次得滑块得速度并结算出:(注意速度方向)动量得变化大小C=(mv+mv)/(mu+mu)恢复系数e=(v—v)/(u—u)(v—v为两物体碰撞后相互分离得相对速度,u-u则为碰撞前彼此接近得相对速度)
【注意事项】
1、严格按照在操作规范使用物理天平;
2、严格按照气垫导轨操作规则;
3、给滑块速度时速度要平稳,不应使滑块产生摆动;挡光框应与滑块运动方向一致,且其遮光边缘应与滑块运动方向垂直;
4、挡光框应与滑块之间应固定牢固,防止碰撞时相对位置改变,影响测量精度。
【思考题】
1、动量守恒定律成立得条件就是什么?
系统所受得外力之与为0
2、滑块距光电门近些好还就是远些好?两光电门间近些好还就是远些好?为什么?
滑块距光电门近些好,两光电门间近些好,因为气垫导轨上仍然就是存在微小得摩擦得,滑块与光电门之间、两光电门之间得距离尽可能得小,可以减小实验误差。
【实验结果与分析】
(均以轻滑块得初速度�
本次实验让我们熟悉了物理天平,掌握气垫导轨得水平调整、光电门及电脑通用计数器得使用。同时通过自己得操作利用对心碰撞验证了动量守恒定律,从而使我们更加深入地理解力学原理,实验中遇到了问题,我们经过努力分析后解决问题,让我们学会了许多。