七年级数学上册教案(优秀5篇)

作为一位杰出的老师,通常需要准备好一份教案,教案是教学蓝图,可以有效提高教学效率。那要怎么写好教案呢?读书之法,在循序而渐进,熟读而精思,以下是小编给大伙儿整理的5篇七年级数学上册教案的相关文章,希望对大家有一些参考价值。

讲授新课 篇1

(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数、而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+ ,…就是3,2,0.5, ,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号

(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数

(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数

(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。

用正负数表示具有相反意义的量。

(5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量、正数和负数在许多方面被广泛地应用、在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度、例如:珠穆朗玛峰的海拔高度为8844,吐鲁番盆地的海拔高度为-155、记录账目时,通常用正数表示收入款额,负数表示支出款额。

(6)、 请学生解释课本中图1、1-2,图1、1-3中的正数和负数的含义。

(7)、 你能再举一些用正负数表示数量的实际例子吗?

(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量

七年级数学上册教案 篇2

第一课时

教学目的

让学生通过独立思考,积极探索,从而发现;初步体会数形结合思想的作用。

重点、难点

1.重点:通过分析图形问题中的数量关系,建立方程解决问题。

2.难点:找出“等量关系”列出方程。

教学过程

一、复习提问

1.列一元一次方程解应用题的步骤是什么?

2.长方形的周长公式、面积公式。

二、新授

问题3.用一根长60厘米的铁丝围成一个长方形。

(1)使长方形的宽是长的专,求这个长方形的长和宽。

(2)使长方形的宽比长少4厘米,求这个长方形的面积。

(3)比较(1)、(2)所得两个长方形面积的大小,还能围出面积更大的长方形吗?

不是每道应用题都是直接设元,要认真分析题意,找出能表示整个题意的等量关系,再根据这个等量关系,确定如何设未知数。

(3)当长方形的长为18厘米,宽为12厘米时

长方形的面积=18×12=216(平方厘米)

当长方形的长为17厘米,宽为13厘米时

长方形的面积=221(平方厘米)

∴(1)中的长方形面积比(2)中的长方形面积小。

问:(1)、(2)中的长方形的长、宽是怎样变化的?你发现了什么?如果把(2)中的宽比长少“4厘米”改为3厘米、2厘米、1厘米、0.5厘米长方形的面积有什么变化?猜想宽比长少多少时,长方形的面积最大呢?并加以验证。

实际上,如果两个正数的和不变,当这两个数相等时,它们的积最大,通过以后的学习,我们就会知道其中的道理。

三、巩固练习

教科书第14页练习1、2。

第l题等量关系是:圆柱的体积=长方体的体积。

第2题等量关系是:玻璃杯中的水的体积十瓶内剩下的水的体积=原来整瓶水的体积。

四、小结

运用方程解决问题的关键是抓住等量关系,有些等量关系是隐藏的,不明显,要联系实际,积极探索,找出等量关系。

五、作业

教科书第16页,习题6.3.1第1、2、3。

第二课时

教学目的

通过分析储蓄中的数量关系、商品利润等有关知识,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。

重点、难点

1.重点:探索这些实际问题中的等量关系,由此等量关系列出方程。

2.难点:找出能表示整个题意的等量关系。

教学过程

一、复习

1.储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数

本利和=本金×利息×年数+本金

2.商品利润等有关知识。

利润=售价-成本 ; =商品利润率

二、新授

问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元?

利息-利息税=48.6

可设小明爸爸前年存了x元,那么二年后共得利息为

2.43%×X×2,利息税为2.43%X×2×20%

根据等量关系,得 2.43%x·2-2.43%x×2×20%=48.6

问,扣除利息的20%,那么实际得到的利息是多少?扣除利息的20%,实际得到利息的80%,因此可得

2.43%x·2·80%=48.6

解方程,得 x=1250

例1.一家商店将某种服装按成本价提高40%后标价,又以8折 (即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元?

大家想一想这15元的利润是怎么来的?

标价的80%(即售价)-成本=15

若设这种服装每件的成本是x元,那么

每件服装的标价为:(1+40%)x

每件服装的实际售价为:(1+40%)x·80%

每件服装的利润为:(1+40%)x·80%-x

由等量关系,列出方程:

(1+40%)x·80%-x=15

解方程,得 x=125

答:每件服装的成本是125元。

三三、巩固练习

教科书第15页,练习1、2。

四、小结

当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。

五、作业

教科书第16页,习题6.3.1,第4、5题。

三课时

教学目的

借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。

重点、难点

1.重点:列一元一次方程解决有关行程问题。

2.难点:间接设未知数。

教学过程

一、复习

1.列一元一次方程解应用题的一般步骤和方法是什么?

2.行程问题中的基本数量关系是什么?

路程=速度×时间 速度=路程 / 时间

二、新授

例1.小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷,在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站,随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站,已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?

画“线段图”分析, 若直接设元,设小张家到火车站的路程为x千米。

1.坐公共汽车行了多少路程?乘的士行了多少路程?

2.乘公共汽车用了多少时间,乘出租车用了多少时间?

3.如果都乘公共汽车到火车站要多少时间?

4,等量关系是什么?

如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。

可设公共汽车从小张家到火车站要x小时。

设未知数的方法不同,所列方程的复杂程度一般也不同,因此在设未知数时要有所选择。

三、巩固练习

教科书第17页练习1、2。

四、小结

有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的。等量关系,根据这个等量关系确定怎样设未知数。

四、作业

教科书习题6.3.2,第1至5题。

第四课时

教学目的

1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。

2.理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。

重点、难点

重点:工程中的工作量、工作的效率和工作时间的关系。

难点:把全部工作量看作“1”。

教学过程

一、复习提问

1.一件工作,如果甲单独做2小时完成,那么甲独做I小时完成全

部工作量的多少?

2.一件工作,如果甲单独做。小时完成,那么甲独做1小时,完成

全部工作量的多少?

3.工作量、工作效率、工作时间之间有怎样的关系?

二、新授

阅读教科书第18页中的问题6。

分析:1.这是一个关于工程问题的实际问题,在这个问题中,已经知道了什么? 已知:制作一块广告牌,师傅单独完成需4天,徒弟单独做要6天。

2.怎样用列方程解决这个问题?本题中的等量关系是什么?

[等量关系是:师傅做的工作量+徒弟做的工作量=1)

[先要求出师傅与徒弟各完成的工作量是多少?]

两人的工效已知,因此要先求他们各自所做的天数,因此,设师傅做了x天,则徒弟做(x+1)天,根据等量关系列方程。 解方程得 x=2

师傅完成的工作量为= ,徒弟完成的工作量为=

所以他们两人完成的工作量相同,因此每人各得225元。

三、巩固练习

一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现

由甲独做10小时;

请你提出问题,并加以解答。

例如 (1)剩下的乙独做要几小时完成?

(2)剩下的由甲、乙合作,还需多少小时完成?

(3)乙又独做5小时,然后甲、乙合做,还需多少小时完成?

四、小结

1.本节课主要分析了工作问题中工作量、工作效率和工作时间之

间的关系,即 工作量=工作效率×工作时间

工作效率= 工作时间=

2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。

五、作业

教科书习题6.3.3第1、2题。

课时划分 篇3

1、1 正数和负数 2课时

1、2 有理数 5课时

1、3 有理数的加减法 4课时

1、4 有理数的乘除法 5课时

1、5 有理数的乘方 4课时

第一章有理数 2课时

1、1正数和负数

单元教学内容 篇4

1、本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系

引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念

2、通过怎样用数简明地表示一条东西走向的马路旁的树、电线杆与汽车站的相对位置关系引入数轴、数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:

(1)数轴能反映出数形之间的对应关系

(2)数轴能反映数的性质、

(3)数轴能解释数的某些概念,如相反数、绝对值、近似数

(4)数轴可使有理数大小的`比较形象化

3、对于相反数的概念,从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分

4、正确理解绝对值的概念是难点

根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:

(1)任何有理数都有唯一的绝对值

(2)有理数的绝对值是一个非负数,即最小的绝对值是零

(3)两个互为相反数的绝对值相等,即│a│=│-a│

(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a

(5)若│a│=│b│,则a=b,或a=-b或a=b=0

教学重、难点与关键 篇5

1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。

2、难点:正确理解负数的概念。

3、关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。

一键复制全文保存为WORD
相关文章