七年级数学上册教案【优秀9篇】

作为一名优秀的教育工作者,常常需要准备教案,教案是教学活动的依据,有着重要的地位。快来参考教案是怎么写的吧!以下是人见人爱的小编分享的七年级数学上册教案【优秀9篇】,如果能帮助到您,小编的一切努力都是值得的。

初一数学上册教案 篇1

教材分析

方程是应用广泛的数学工具,是代数学的核心内容,在义务教育阶段的数学课程中占有重要地位。本节课选自人教版数学七年级上册第三章第一节的内容,是一节引入课,对于激发学生学习方程的兴趣,获得解决实际问题的基本方法具有十分重要的作用。本节课是结合学生已有学习经验,从算式到方程,继而对一元一次方程及方程的解进行了探究,让学生体验未知数参与运算的好处,用方程分析问题、解决问题(即培养学生建模的思想),体会学习方程的意义和作用。本节课是在承接小学学习的简易方程和刚刚学习的整式的加减的基础上进行学习的,同时又是后续学习二元一次方程、一元二次方程的重要基础。因此,这节课在教材中起到了承上启下的作用。

学情分析

学生前面已经学习了简单的方程及整式的内容,为本节课的学习做好了铺垫。

七年级的'学生思维活跃,求知欲强,有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,因而在教学素材的选取与呈现方式以及学习活动的安排上力求设置学生感兴趣的并且具有挑战性的内容,让学生感受到数学来源于生活又回归生活实际,无形中产生浓厚的学习兴趣和探索热情。

七年级学生对于方程已经具备了一定的知识基础,但是对方程的理解还比较肤浅、模糊,还处于感性层面,缺乏理性的认识和把握,而且学生正处于感性认识向理性认识过渡的时期,抽象思维能力有待提高,对于一元一次方程的概念教学要选取具体的问题情境,逐步抽象。

七年级的学生很想利用所学的知识解决问题,通过对几个问题的分析、探讨、相互交流,逐步培养学生的观察、探索、归纳等能力,提高对课本知识的运用能力,从而认识归纳一元一次方程的相关概念,在练习中巩固和熟悉一元一次方程。

教学目标

1、知识与技能目标

(1)掌握方程、一元一次方程的定义,知道什么是方程的解。

(2)体会字母表示数的好处,会根据实际问题的条件列方程,能检验出一个数值是否是方程的解。

2、过程与方法目标

(1)通过将实际问题抽象成数学问题,分析实际问题中的数量关系,利用其中的相等关系列出方程,渗透数学建模的思想,认识到从算式到方程是数学的一种进步。

(2)通过具体情境贴近学生生活,在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化,会利用一元一次方程的知识解决一些实际问题。

3、情感态度与价值观目标

(1)通过具体情境的探索、交流等数学活动培养学生的团体合作精神和积极参与、勤于思考的意识。

(2)激发学生的求知欲和学习数学的热情,培养独立思考和合作交流的能力,让他们享受成功的喜悦。

(3)经历从生活中发现数学和应用数学解决实际问题的过程,树立多种方法解决问题的创新意识,增强用数学的意识,体会数学的应用价值。

教学重点、难点

教学重点:1.方程、一元一次方程、方程的解的概念。

2、根据实际问题的条件列出方程。

教学难点:分析实际问题中的数量关系,利用其中的相等关系列出方程。

教学过程

一、创设情境 导入新课

二、探究新知 形成概念

三、应用新知 巩固提高

四、感悟反思

五、名题欣赏

六、布置作业

板书设计

讲授新课 篇2

(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数、而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+ ,…就是3,2,0.5, ,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号

(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数

(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数

(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。

用正负数表示具有相反意义的量。

(5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量、正数和负数在许多方面被广泛地应用、在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度、例如:珠穆朗玛峰的海拔高度为8844,吐鲁番盆地的海拔高度为-155、记录账目时,通常用正数表示收入款额,负数表示支出款额。

(6)、 请学生解释课本中图1、1-2,图1、1-3中的正数和负数的含义。

(7)、 你能再举一些用正负数表示数量的实际例子吗?

(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量

七年级数学上册教案 篇3

教学目的:

1.知识与技能

体会有理数乘法的实际意义;

掌握有理数乘法的运算法则和乘法法则,灵活地运用运算律简化运算。

2.过程与方法

经历有理数乘法的推导过程,用分类讨论的思想归纳出两数相乘的法则,感悟中、小学数学中的乘法运算的重要区别。

通过体验有理数的乘法运算,感悟和归纳出进行乘法运算的一般步骤。

3.情感、态度与价值观

通过类比和分类的思想归纳乘法法则,发展举一反三的能力。

教学重点:

应用法则正确地进行有理数乘法运算。

教学难点:

两负数相乘,积的符号为正。

教具准备:

多媒体。

教学过程:

一、引入

前面我们已经学习了有理数的加法运算和减法运算,今天,我们开始研究有理数的乘法运算.

问题一:有理数包括哪些数?

回答:有理数包括正整数、正分数、负整数、负分数和零.

问题二:小学已经学过的乘法运算,属于有理数中哪些数的运算?

回答:属于正有理数和零的乘法运算.或答:属于正整数、正分数和零的乘法运算.

计算下列各题;

以上这些题,都是对正有理数与正有理数、正有理数与零、零与零的乘法,方法与小学学过的相同,今天我们要研究的有理数的乘法运算,重点就是要解决引入负有理数之后,怎样进行乘法运算的问题.

二、新课

我们以蜗牛爬行距离为例,为区分方向,我们规定:向左为负,向右为正,为区分时间,我们规定:现在前为负,现在后为正。

如图,一只蜗牛沿直线l爬行,它现在的位置恰在l上的点O。

1.正数与正数相乘

问题一:如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?

讲解:3分后蜗牛应在l上点O右边6cm处,这可表示为

(+2)×(+3)=+6

答:结果向东运动了6米.

2.负数与正数相乘

问题二:如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?

讲解:3分后蜗牛应在l上点O右边6cm处,这可表示为

(-2)×(+3)=(-6)

3.正数与负数相乘

问题三:如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?

讲解:3分后蜗牛应为l上点O左边6cm处,这可以表示为

(+2)×(-3)=-6

4.负数与负数相乘

问题四:如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?

讲解:3分前蜗牛应为l上点O右边6cm处,这可以表示为

(-2)×(-3)=+6

5.零与任何数相乘或任何数与零相乘

问题五:原地不动或运动了零次,结果是什么?

答:结果都是仍在原处,即结果都是零,若用式子表达:

0×3=0;0×(-3)=0;2×0=0;(-2)×0=0.

综合上述五个问题得出:

(1)(+2)×(+3)=+6;

(2)(-2)×(+3)=-6;

(3)(+2)×(-3)=-6;

(4)(-2)×(-3)=+6.

(5)任何数与零相乘都得零.

观察上述(1)~(4)回答:

1.积的符号与因数的符号有什么关系?

2.积的绝对值与因数的绝对值有什么关系?

答:1.若两个因数的符号相同,则积的符号为正;若两个因数的符号相反,则积的符号为负.2.积的绝对值等于两个因数的`绝对值的积.

由此我们可以得到:

两数相乘,同号得正,异号得负,并把绝对值相乘.

(1)~(5)包括了两个有理数相乘的所有情况,综合上述各种情况,得到有理数乘法的法则:

口答:确定下列两数积的符号:

例题:计算下列各题:

解题步骤:

1.认清题目类型.

2.根据法则确定积的符号.

3.绝对值相乘.

练习:

1.口答下列各题:

(1)6×(-9);(2)(-6)×(-9);

(3)(-6)×9;(4)(-6)×1;

(5)(-6)×(-1);(6)6×(-1);

(7)(-6)×0;(8)0×(-6);

(9)(-6)×0.25;(10)(-0.5)×(-8);

注意:由(4)(5)(6)得:一个数与1相乘得原数,一个数与-1相乘,得原数的相反数.

2.在表中的各个小方格里,填写所在的横行的第一个数与所在直列的第一个数的积:

3.计算下列各题:

(1)(-36)×(-15);(2)-48×1.25;

4.填空:

(1)1×(-5)=____;(-1)×(-5)=____;

+(-5)=____;-(-5)=____;

(2)1×a=____;(-1)×a=____;

(3)1×|-5|=____;-1×|-5|=____;

-|-5|=____

(4)1+(-5)=____;(-1)+(-5)=____;

(-1)+5=____.

三、小结

(1)指导学生看书,精读乘法法则.

(2)强调运用法则进行有理数乘法的步骤.

(3)比较有理数乘法的符号法则与有理数加法的符号法则的区别,以达到进一步巩固有理数乘法法则的目的.

四、作业

1.计算:

(1)(-16)×15;(2)(-9)×(-14);

(3)(-36)×(-1);(4)13×(-11);

(5)(-25)×16;(6)(-10)×(-16).

2.计算:

(1)2.9×(-0.4);(2)-30.5×0.2;

(3)0.72×(-1.25);(4)100×(-0.001);

(5)-4.8×(-1.25);(6)-4.5×(-0.32).

3.计算:

4.填空:(用“>”或“<”号连接)

(1)如果a<0,b>0,那么,ab____0;

(2)如果a<0,b<0,那么,ab____0;

(3)当a>0时,a____2a;

(4)当a<0时,a____2a.

板书设计

1.4有理数的乘法

法则:练习

教学设计思路

本节课是在小学已接触到的乘法、初中刚学习过的有理数的加减法基础上进行的。通过对实际问题的解决,引入有理数的乘法法则。在讲解运动的例子时运用现代化教学手段,把图形中的“静”变“动”,增强了直观性,初步培养想象能力。

教学反思

强调学生与教师一起共同参与教学活动,我们坚持把教学活动过程体现在教学中,又激发学生的思维积极性,让学生学会分析问题和解决问题。

知识与技能 篇4

能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量

七年级数学上册教案 篇5

教学目标:

1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);

2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力。

教学重点:

深化对正负数概念的理解。

教学难点:

正确理解和表示向指定方向变化的`量。

教与学互动设计:

(一)知识回顾和理解

通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们。

[问题1]:“零”为什么既不是正数也不是负数呢?

学生思考讨论,借助举例说明。

参考例子:用正数、负数和零表示零上温度、零下温度和零度。

思考“0”在实际问题中有什么意义?

归纳“0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义。

如:水位不升不降时的水位变化,记作:0 m.

[问题2]:引入负数后,数按照“具有两种相反意义的量”来分,可以分成几类?分别是什么?

(二)深化理解,解决问题

[问题3]:(课本P3例题)

【例1】(1)一个月内,小明体重增加2 kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;

【例2】(2)某年,下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%,

法国减少2.4%,英国减少3.5%,

意大利增长0.2%,中国增长7.5%.

写出这些国家这一年商品进出口总额的增长率。

解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义。写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量。类似的还有水位上升、收入上涨等等。我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们。

巩固练习

1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值。

2.让学生再举出一些常见的具有相反意义的量。

3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:

中国减少866,印度增长72,

韩国减少130,新西兰增长434,

泰国减少3247,孟加拉减少88.

(1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;

(2)如何表示森林面积减少量,所得结果与增长量有什么关系?

(3)哪个国家森林面积减少最多?

(4)通过对这些数据的分析,你想到了什么?

阅读与思考

(课本P6)用正数和负数表示加工允许误差。

问题:1.直径为30.032 mm和直径为29.97 mm的零件是否合格?

2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例。

(三)应用迁移,巩固提高

1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5 ℃,则乙冷库的温度是。

2.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9 mm,加工要求不超过标准尺寸多少?最小不小于标准尺寸多少?

3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:

星期一二三四

增减-5 +7 -3 +4

根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?

类比例题,要求学生注意书写格式,体会正负数的应用。

(四)课时小结(师生共同完成)

七年级数学上册教案 篇6

教学目标和要求:

1.理解单项式及单项式系数、次数的概念。

2.会准确迅速地确定一个单项式的系数和次数。

3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。

教学重点和难点:

重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。

难点:单项式概念的建立。

教学方法:

分层次教学,讲授、练习相结合。

教学过程:

一、复习引入:

1、 列代数式

(1)若正方形的边长为a,则正方形的面积是 ;

(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为 ;

(3)若x表示正方形棱长,则正方形的体积是 ;

(4)若m表示一个有理数,则它的相反数是 ;

(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款 元。

(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。)

2、 请学生说出所列代数式的意义。

3、 请学生观察所列代数式包含哪些运算,有何共同运算特征。

由小组讨论后,经小组推荐人员回答,教师适当点拨。

(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。)

二、讲授新课:

1.单项式:

通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。然后教师补充,单独一个数或一个字母也是单项式,如a,5。

2.练习:判断下列各代数式哪些是单项式?

(1) ; (2)abc; (3)b2; (4)-5ab2; (5)y; (6)-xy2; (7)-5。

(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)

3.单项式系数和次数:

直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的'。以四个单项式a2h,2r,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。

4.例题:

例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。

①x+1; ② ; ③ ④- a2b。

答:①不是,因为原代数式中出现了加法运算;②不是,因为原代数式是1与x的商;

③是,它的系数是,次数是2; ④是,它的系数是- ,次数是3。

例2:下面各题的判断是否正确?

①-7xy2的系数是7; ②-x2y3与x3没有系数; ③-ab3c2的次数是0+3+2;

④-a3的系数是-1; ⑤-32x2y3的次数是7; ⑥ r2h的系数是 。

通过其中的反例练习及例题,强调应注意以下几点:

①圆周率是常数;

②当一个单项式的系数是1或-1时,1通常省略不写,如x2,-a2b等;

③单项式次数只与字母指数有关。

5.游戏:

规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准。

(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识。)

6.课堂练习:课本p56:1,2。

三、课堂小结:

①单项式及单项式的系数、次数。

②根据教学过程反馈的信息对出现的问题有针对性地进行小结。

③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。

四、课堂作业: 课本p59:1,2。

板书设计:

《单项式》 1.单项式的定义: 2.例1: 例2: 学生练习:

教学后记:

本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。

针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础。

七年级上册数学教案 篇7

学习目标:

1、引导学生正确区分“线段、射线、直线”,掌握其表示方法,理解并能运用相关性质、公理。

2、了解线段中点的概念,能借助刻度尺、圆规等画图工具画一条线段等于已知线段。

3、引领学生在感受美妙多变的图形世界中,培养他们的观察、分析、比较、探究等能力。

重点与难点:了解线段中点的概念,能画一条线段等于已知线段。发展学生有条理的思考,并能正确地表述。

学习过程:

一、课前预习导学

1、如图,点a、b、c、d在直线ab上,则图中能用字母表示的共有条线段,有条射线,有条直线。

2、从a到b地有①、②、③三条路可以走,每条路长分别为:,则第条路最短,另两条路的长短关系是。

第1题

第2题

3、如图,若是中点,是中点,

(1)若,_________;

(2)若,_________。

二、课堂学习1、议一议:

(1)、在平面内画一个点,过这个点画直线,能画多少条?

(2)、要在墙上钉牢一根木条,至少要用几个钉子?为什么?

(3)、如果平面内有两个点,过这两个点画直线,又能画多少条?

总结:“过两点有______,并且____ ”

思考:过平面上三点中的每两点画直线,可画多少条?

2、做一做:已知两点a、b

(1)画线段ab(连接ab)

(2)延长线段ab到点c,使bc=ab

注意:我们把上图中的点b叫做线段ac的。

3、想一想:(1)如果点b是线段ac的中点,那么线段ab、bc、ac之间有怎样的数量关系?与同学交流。

(2)如何用符号语言表述中点的概念?

总结:如果点b是线段ac的中点,那么;

如果,那么b是线段ac的中点。

4、知识运用:

例1、如图,线段ab=8cm,c是ab的中点,点d在cb上,db=1.5cm.求线段cd的长度。

练习:1、如图ab=8cm,点c是ab的中点,

点d是cb的中点,则ad=____cm

2、如图,下列说法,不能判断点c是线段ab的中点的是( )

a、ac=cb b、ab=2ac c、ac+cb=ab d、cb=0.5ab

3、已知线段ab=8cm,点c是线段ab上任意一点,点m,n分别是线段ac与线段bc的中点,求线段mn的长。

三、课堂检测1.下列说法中,正确的是()

a.射线oa和射线ao表示同一条射线;b.延长直线ab;

c.经过两点有一条直线,并且只有一条直线;d.如果ac=bc,那么点c是线段ab的中点.

2.如果要在墙上固定一根木条,你认为至少要钉子()

a.1根b.2根c.3根d.4根

3.如图,若是中点,是中点,

(1)若,,_________;(2)若,_________。

4.如图在平面内有a、b、c、d四点,按要求画图。

(1)画直线ab、射线bc、线段bd

(2)连结ac交bd于点o

(3)画射线cd并反向延长射线cd,

(4)连结ad并延长至点e,使ad=de。

四、课后作业

1、下列说法中正确的是()

a、连结两点的线段叫做两点之间的距离b、直线没有端点,射线至少有一个端点

c、经过平面内两点有且只有一条直线d、运动场上的300m赛跑,表示起点和终点之间的距离是300米

2、如图,b是线段ad上一点,c是线段bd的中点,ad=10,bc=3,求线段cd、ab的长度

3、如图,线段ad=8,ab=cd=3,e、f分别是ab、cd的中点,求线段ef的长。

4、已知线段mn=7,点p在直线mn上,且mp=3,则np= 。

5、一条直线上有a,b,c三点,其中ab=4cm,bc=3cm,若o是线段ac的中点,求线段ob的长度。

七年级数学上册教案 篇8

教学目标

1.进一步掌握有理数的运算法则和运算律;

2.使学生能够熟练地按有理数运算顺序进行混合运算;

3.注意培养学生的运算能力.

教学重点和难点

重点:有理数的混合运算.

难点:准确地掌握有理数的运算顺序和运算中的符号问题.

课堂教学过程设计

一、从学生原有认知结构提出问题

1.计算(五分钟练习):

(5)-252; (6)(-2)3;(7)-7+3-6; (8)(-3)×(-8)×25;

(13)(-616)÷(-28); (14)-100-27; (15)(-1)101; (16)021;

(17)(-2)4; (18)(-4)2; (19)-32; (20)-23;

(24)3.4×104÷(-5).

2.说一说我们学过的有理数的运算律:

加法交换律:a+b=b+a;

加法结合律:(a+b)+c=a+(b+c);

乘法交换律:ab=ba;

乘法结合律:(ab)c=a(bc);

乘法分配律:a(b+c)=ab+ac.

二、讲授新课

前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的。顺序进行运算?

1.在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行.

审题:(1)运算顺序如何?

(2)符号如何?

说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果.带分数分成整数部分和分数部分时的符号与原带分数的符号相同.

七年级数学上册教案 篇9

一、有理数的意义

1、有理数的分类

知识点:大于零的数叫正数,在正数前面加上“﹣”(读作负)号的数叫负数;如果一个正数表示一个事物的量,那么加上“﹣”号后这个量就有了完全相反的意义;3,,5.2也可写作+3,+,+5.2;零既不是正数,也不是负数。

2、数轴

知识点:数轴是数与图形结合的工具;数轴:规定了原点、正方向和单位长度的直线;数轴的三元素:原点、正方向、单位长度,这三元素缺一不可,是判断一条直线是否是数轴的根本依据;数轴的作用:1)形象地表示数(因为所有的有理数都可以用数轴上的点表示,以后会知道数轴上的每一个点并不都表示有理数),2)通过数轴从图形上可直观地解释相反数,帮助理解绝对值的意义,3)比较有理数的大小:a)右边的数总比左边的数大,b)正数都大于零,c)负数都小于零,d)正数大于一切负数

3、相反数

知识点:只有符号不同的两个数互为相反数;在数轴上表示互为相反数的两个点到原点的距离相等且分别在原点的两边;规定:0的相反数是0。

4、绝对值

知识点:一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作∣a∣;绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,即若a>0,则∣a∣=a.若a=0,则∣a∣=0.若a<0,则∣a∣=﹣a;绝对值越大的负数反而小;两个点a与b之间的距离为:∣a-b∣。

二、有理数的运算

1、有理数的加法

知识点:有理数的加法法则:1)同号两数相加,取相同的符号,并把绝对值相加;2)异号两数相加,①绝对值相等时,和为零(即互为相反数的两个数相加得0);②绝对值不相等时,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3)一个数和0相加仍得这个数。

加法交换律:a+b=b+a;加法结合律:a+b+c=a+(b+c)

多个有理数相加时,把符号相同的数结合在一起计算比较简便,若有互为相反的数,可利用它们的和为0的特点。

2、有理数的减法

知识点:有理数的减法法则:减去一个数等于加上这个数的相反数,即a-b=a+(-b)。

注意:运算符号“+”加号、“-”减号与性质符号“+”正号、“-”负号统一与转化,如a-b中的减号也可看成负号,看作a与b的相反数的和:a+(-b);一个数减去0,仍得这个数;0减去一个数,应得这个数的相反数。

3、有理数的加减混合运算

知识点:有理数的加减法混合运算可以运用减法法则统一成加法运算;加减法混合运算统一成加法运算以后,可以把“+”号省略,使算式变得更加简洁。

4、有理数的乘法

知识点:乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数和0相乘都得0。

几个不等于0的数相乘,积的符号由负因数的个数决定;当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。几个数相乘,有一个因数为0,积就为0。

乘法交换律:ab=ba乘法结合律:abc=a(bc)乘法分配律:a(b+c)=ab+bc

5、有理数的除法

知识点:除法法则1:除以一个数等于乘上这数的倒数,即a÷b==a(b≠0即0不能做除数)。

除法法则2:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。

倒数:乘积是1的两数互为倒数,即a=1(a≠0),0没有倒数。

注意:倒数与相反数的区别

6、有理数的乘方

知识点:乘方:求n个相同因数的积的运算。乘方的结果叫幂,an中,a叫做底数,n叫做指数。

乘方的符号法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何次幂都为0。

7、有理数的混合运算

知识点:运算顺序:先乘方,再乘除,最后算加减,遇到有括号,先算小括号,再中括号,最后大括号,有多层括号时,从里向外依次进行。

技巧:先观察算式的结构,策划好运算顺序,灵活进行运算。

一键复制全文保存为WORD
相关文章