数学教案梯形的面积计算优秀5篇

在教学工作者实际的教学活动中,通常需要准备好一份教案,教案有助于顺利而有效地开展教学活动。我们该怎么去写教案呢?的小编精心为您带来了数学教案梯形的面积计算优秀5篇,希望能够帮助到大家。

五年级《梯形的面积》教案 篇1

教学目标:

1、使学生发现梯形面积公式的推导方法,理解公式的形成,并能运用公式解决简单的实际问题,发展实践能力。

2、通过对面积公式的探索,培养学生观察比较、动手操作的能力,发展空间观念。

3、结合教学内容,渗透“转化”的教学,培养学生初步的创新思维能力。

教学重点:

发现、理解和应用梯形面积计算公式。

教学难点:

理解公式的推导过程

教具准备:

计算机软、硬件一套;两个完全一样的直角梯形拼成的长方形;两个完全一样的梯形拼成的平行四边形;标有上、下底和高及数据的一般梯形、等腰梯形、直角梯形各一个。

学具准备

每个学生准备两个完全一样的一般梯形、直角梯形、等腰梯形和剪刀。

教学过程:

一、迁移诱导,激发参与兴趣

1、启发学生回忆三角形的面积推导公式。

2、板书课题,引入新课。

二、实验操作,引导参与探究

1、转化

学生分成四人小组进行学习。

独立拿出准备好的各种梯形,拼成学过的图形。

学生拼摆,教师对不同层次的学生,及时给予点拨和鼓励。

2、观察

学生分组,结合拼成的平行四边形观察、讨论。教师巡视,注意点拨。

板书如下:梯形面积 拼成的平行四边形面积的一半

平行四边形的底 梯形是上底+下底

平行四边形的高 梯形的高

3、推导

学生分组讨论,教师巡视,注意点拨。

学生反馈,教师注意用规范的语言进行调控。

板书如下:

平行四边形面积= 底 × 高

梯 形 的 面 积=(上底+下底)×高÷2

S=(a+b)×h÷2

提问:计算梯形的面积为什么除以2?

三、反馈调节,巩固参与成果

1、引导实际应用,巩固梯形面积公式

2、分层训练,培养能力

3、发展提高,深化知识

《梯形的面积》教案 篇2

一、解析教材内涵

这部分内容的教学是在学习了平行四边形和三角形面积计算的基础上进行的。与前两节一样,教材先通过小轿车车窗玻璃是梯形的这样一个生活实例引入梯形面积计算。然后通过学生动手实验探索出面积计算公式,最后用字母表示出梯形的面积计算公式。但是要求又有提高,不再给出具体的方法,而是要求用学过的方法去推导梯形面积计算公式。这里仍然要运用转化成已学过图形的方法,但是从教材中学生的操作可以看出,方法与途径多了,可以用分割的方法,也可以用拼摆的方法;可以转化为三角形进行推导,也可以转化成平行四边形进行推导。梯形面积计算公式推导有多种方法,教材显示了三种方法。

(1)两个一样的梯形拼成一个平行四边形。

(2)把一个梯形剪成两个三角形。

(3)把一个梯形剪成一个平行四边形和一个三角形。

还可以:从梯形两腰中点的连线将梯形剪开,拼成一个平行四边形,等等。

策略与方法:

(1)加强知识之间的联系,根据图形面积计算之间的内在联系安排教学顺序,以促进知识的迁移和学习能力的提高。

(2)体现动手操作、合作学习的学习方式,让学生经历自主探索的过程

(3)重视动手操作与实验,引导学生探究,渗透“转化”思想,注意培养学生用多种策略解决问题的意识和能力。

“梯形面积的计算”

二、 复习导入

1、单元知识梳理,揭示转化思想

师:同学们,我们在多边形的面积这一单元已经学习了平行四边形和三角形面积计算方法,那谁来说说怎样计算它们的面积?

师:请大家回忆一下,它们的面积计算方法是怎么推导出来的?

2、导入主题

师:我们都是把它们转化成学过的图形来研究面积。看来转化这种方法能帮助我们解决很多问题,今天这节课我们就借助这个方法来研究梯形的面积。(板书课题:梯形的面积)

三、利用转化,实践探究 1、初步的想法,互受启发

师:同学们来看,这是一个梯形。现在呀,就请大家想一想,怎样利用转化的方法知道梯形的面积怎样来计算呢?

2、动手实践,主动探知。

师:大家这样一说,我们的思路就打开了。其实还有很多方法,同学们没有说到。接下来我们就按照这个学习提纲深入地探究梯形面积的计算方法。

1、运用转化的方法,将梯形转化成学过的图形。

2、借助学过的方法推导梯形面积的计算方法。

3、填写学习单,小组进行交流。

3、交流反馈(学生拿学具到实物展台汇报,教师拿事先预设的大教具评价,记录)

预设:代表1:两个完全一样的梯形可以拼成一个平行四边形,这个平行四边形的底等于梯形的(上底+下底),这个平行四边形的高等于梯形的高,每个梯形的面积等于拼成的平行四边形面积的一半,所以:

s=(a+b)×h÷2

代表2:把一个梯形分成两个三角形,其中一个三角形的底等于梯形的上底,高等于梯形的高;另一个三角形的底等于梯形的下底,高等于梯形的高。所以:梯形的面积=三角形1的面积+三角形2的面积

=梯形上底×高÷2+梯形下底×高÷2

=ah÷2+bh÷2

代表3:我把一个梯形分成一个平行四边形和一个三角形。平行四边形的底等于梯形的上底,平行四边形的高等于梯形的高;而三角形的底等于(梯形的下底-梯形的上底),三角形的高等于梯形的高。所以:梯形的面积= 平行四边形面积+三角形面积

= 平行四边形的底×高+三角形的底×高÷2

=ah+(b-a)h÷2

代表4:把梯形上下对折,沿着折痕剪开成两部分,并拼成一个平行四边形,平行四边形的底等于(梯形的上底+梯形的下底),平行四边形的高等于梯形的高÷2,梯形的面积等于拼成的平行四边形的面积。所以:

(a+b) ×(h÷2)

4、总结规律

师:同学们把梯形转化成我们学过的图形,推导出它的面积计算方法,并用字母式表示了出来。大家来看:教师将以上的公式整理成统一的公式。

5、找联系,字母归一

师:看来无论哪种方法我们都可以总结为梯形的面积计算方法就是

板书:梯形的面积=(上底+下底)×高÷2

S=(a+b)×h÷2

6、全课总结

师:同学们用了不同的方法推导出梯形的面积的计算公式是。。。。。。

四、课堂练习,知识巩固 学生练习本打8个格子,训练小组长批改。

1、口答:列式计算。(梯形图形3道)

2、解决问题 (梯形大坝)

3、车玻璃贴膜。(4个条件)快速列式?今后要选择需要的条件来解决问题。

4、篱笆问题 (书中课后练习)仔细读题,认真思考,在本子上列出算式,自批。

靠墙边围一个花坛,围花坛的篱笆长46米,求这个花坛的面积?

课件出示:闪3条边,闪上下 www.xiaozongshi.com 边。为什么是3条边?

五、课堂反馈,作业预留

1、基本练习数学书90页第1题

2、解决问题:90页第2题、124页

3、变式练习:97页第1题。

4、阅读作业:①、还有哪些方法?②、阅读数学书。

五年级《梯形的面积》教案 篇3

教学内容:

练习十九第5~10题。

教学目的:

通过练习,使学生进一步熟悉梯形面积的计算公式,能够比较熟练地计算梯形的面积。

教具准备:

将下面复习中的图画在小黑板上。

教学过程:

一、复习。

1.口算:练习十九的第5题。

2.出示小黑板。

师:这是一个梯形图,要求它的面积必须知道什么?(学生回答后,让学生到黑板前量出要求这个图形的面积所需要的线段的长。知道了梯形的上底、下底和高,怎样求出它的面积?用哪个公式?(学生回答后,教师板书:

S=(a+b)×h÷2)

这个梯形的面积是多少?(学生独立计算)

二、做练习十九中的题目。

1.第7题,出示水渠模型,问:

这是什么模型?它的横截面是什么形?

渠口的宽可以看成是梯形的什么?渠底的宽呢?

渠深可以看成是梯形的什么?

(学生独立完成填表)

2.第8题,先让学生读题,教师说明:这是飞机模型中机翼的平面图。它是由两个完全相同的梯形组成,问:

现在要求这个机翼平面图的面积,应该怎样求?(先求出一个梯形的面积,再乘以2。)

看一看还有没有其他的算法?(教师提示:因为飞机机翼是由两个完全一样的梯形组成的,如果设想把这个机翼从中间剪开,成为两个完全一样的梯形,再把其中一个梯形经过平移,使两个梯形拼成一个平行四边形,它的底是100毫米加46毫米,高是250毫米。这个平行四边形的面积和我们所要求的机翼平面图的面积相等。)

3.第9题,让学生独立做,做完后集体核对。

4.学有余力的学生做第16题和17题。

第16题,先让学生弄清楚这道题已知什么,求什么,再引导学生用求未知数的方法求出梯形的高。

第17题,这一题是求梯形的面积,上底和下底都是已知的,高是未知的。

高能不能求出来呢?怎样求?

怎样利用涂色的三角形的条件求出梯形的高呢?

三、作业。

练习十九的第6题和第10题。

五年级《梯形的面积》教案 篇4

教学目的:

1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确地计算梯形的面积。

2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

教具准备:

1、小黑板上画下面复习题中的两个三角形图和教科书第80页上面的插图。

2、用厚纸做两个完全一样的梯形,其中一个梯形涂成红色。

3、学生将教科书第147页上面的两个梯形剪下来。

教学过程:

一、复习。

出示三角形图。

问:三角形的面积怎样求?

这个三角形的面积是多少?

三角形的面积计算公式我们是怎样推导出来的?

怎样用两个完全一样的三角形拼出一个平行四边形?(让一个学生到黑板前拼一拼。教师再边说边演示用两个完全一样的三角形拼成一个平行四边形的过程)

师:前面我们学习了平行四边形面积和三角形面积的计算,下面我们继续学习梯形面积的计算。(板书:梯形面积的计算)

二、新课。

1.教学梯形面积的计算公式。

出示教科书第80页上面的梯形图。

问:这个图形是什么形?(梯形)

师:今天我们要学习梯形面积的计算。刚才我们回忆了三角形面积计算公式的推导过程。

问:谁能依照三角形面积公式的推导过程,把梯形也转化成已学过的图形?(让学生拿出准备好的两个完全一样的梯形,每人都拼一拼,摆一摆。然后让一个学生到黑板前摆一摆。)

教师拿出两个完全一样的梯形(一个涂成红色),边说边演示:先把两个梯形重叠,把红色的梯形放在上面,以梯形右下角的顶点为中心,把红色的梯形旋转180度,再把红色的梯形的左边沿着白色的梯形的右边向上移动,使红色梯形的上底和白色梯形的下底同在三条直线上。然后,再带学生一起拼摆。

问:两个完全一样的梯形,经过旋转、平移,两个梯形组成了一个新的图形,是什么形?(平行四边形)

两个完全一样的梯形拼成了一个平行四边形,这个平行四边形的面积和其中一个梯形的面积有什么关系?(梯形的面积是平行四边形面积的一半)

平行四边形的底等于什么?(等于梯形的上底、下底之和)

平行四边形的高和梯形的高有什么关系?(相等)

平行四边形的面积怎样算?(它的底等于3+5=8,高是4,所以平行四边形的面积是32平方厘米)

一个梯形的面积怎样算?(提示学生回答,

教师板书:(3+5)×4÷2

=8×4÷2

=32÷2

=16(平方厘米)

师:下面我们一起来梯形的面积计算公式。刚才我们已经看到梯形的面积是平行四边形面积的一半,平行四边形的面积是怎样算的?(底×高)

问:在这里平行四边形的底是什么?(是梯形的上底和下底之和)

平行四边形的高是什么?(就是梯形的高)

板书:

平行四边形的面积=(上底+下底)×高

梯形的面积=(上底+下底)×高÷2

如果用S表示梯形的面积,用a、b、h分别表示梯形的上底、下底和高,那么梯形的面积计算公式就是:

S=(a+b)×h÷2

问:为什么梯形面积的计算公式中要除以2?(提问学生重申说明:我们学习梯形面积的计算方法,是把梯形转化成了一个平行四边形。而由两个梯形组成的平行四边形的底正是梯形的上底加下底之和,平行四边形的高和梯形的高相等,所以平行四边形的面积就等于上底加下底再乘以高,梯形的面积就等于上底加下底的和乘以高再除以2。)

2.应用出的梯形面积公式计算梯形面积。

(1)出示第81页例题。

指名读题,教师出示水渠的教具,再指出它的横截面,让学生看清它的横截面是一个梯形。再让学生看书。

问:这个梯形的上底是多少?下底呢?

这个梯形的高是多少?

梯形的面积计算公式是什么?怎样列式计算?(学生口述,教师板书)

(2)完成教科书第81页”做一做“中的题目。学生独立计算(说明:四边形中互相平行的一组对边,就分别是梯形的上底和下底。

三、巩固练习。

练习十九第1、2题。

四、作业。

练习十九第3、4题。

小学五年级上册数学《梯形面积的计算》教案 篇5

教学目标:(1)理解梯形面积公式的推导过程,会应用公式正确计算梯形的面积。

(2)培养学生合作学习的能力。

(3)继续渗透旋转、平移的数学思想。

教学重点:理解并掌握梯形面积公式的计算方法。

教学难点:理解梯形面积公式的推导过程。

教学过程:

一、复习旧知

1.求出下面图形的面积。

2.回忆三角形面积公式推导过程(演示课件:拼摆三角形 下载)

二、设疑引入

教师出示一个梯形和一个三角形(已标出底和高)。这个梯形比三角形的面积大还是小?相差多少呢?要想得到准确地结果该怎么办?

板书课题:梯形面积的计算

三、指导探索

第一部分:梯形面积公式的推导。

1.小组合作推导公式。

教师谈话:利用手里的学具,仿照求三角形面积的方法推导梯形面积的计算公式

提纲:

2.(演示课件:拼摆梯形 下载)

电脑演示转化推导的全过程。

一键复制全文保存为WORD
相关文章