平行线的性质教案(优秀10篇)

作为一位兢兢业业的人民教师,通常会被要求编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么大家知道正规的教案是怎么写的吗?这次帅气的小编为您整理了平行线的性质教案(优秀10篇),如果对您有一些参考与帮助,请分享给最好的朋友。

平行线的性质教案 篇1

教学目的

1.使学生掌握平行线的三个性质,并能运用它们作简单的推理。

2.使学生了解平行线的性质和判定的区别。

重点难点

1.平行的三个性质,是本节的重点,也是本章的重点之一。

2.怎样区分性质和判定,是教学中的一个难点。

教学过程

一、引入

问:我们已经学习过平行线的哪些判定公理和定理?

学生齐答:

1.同位角相等,两直线平行。

2.内错角相等,两直线平行。

3.同旁内角互补,两直线平行。

问:把这三句话颠倒每句话中的前后次序,能得怎样的三句话?新的三句话还正确吗?

学生答:

1.两直线平行,同位角相等。

2.两直线平行,内错角相等。

3.两直线平行,同旁内角互补。

教师指出:把一句原本正确的话,颠倒前后顺序,得到新的一句话,不能保证一定正确。例如,“对顶角相等”是正确的,倒过来说“相等的角是对顶角”就不正确了。因此,上述新的三句话的正确性,需要进一步证明。

二、新课

平行线的性质一:两条平行线被第三条直线所截,同位角相等。

简单说成:两直线平行,同位角相等。

怎样说明它的正确性呢?

方法一通过测量实践,作出两条平行线a∥b,再任意作第三条直线c,量量所得的同位角是否相等。

方法二从理论上给予严格推理论证。(以下证法,教师可视学生接受情况,灵活处理讲或者不讲)

已知:如图2-32,直线AB、CD、被EF所截,AB∥CD.

求证:∠1=∠2.

证明:(反证法)

假定∠1≠∠2,

则过∠1顶点O作直线A′B′使∠EOB′=∠2.

∴A′B′∥CD(同位角相等,两直线平行).

故过O点有两条直线AB、A′B′与已知直线CD平行,这与平行公理矛盾。即假定是不正确的。

∴∠1=∠2.

另证:(同一法)

过∠1顶点O作直线A′B′使∠E0B′=∠2.

∴A′B′∥CD(同位角相等,两直线平行).

∵AB∥CD(已知),且O点在AB上,O点在A′B′上,

∴A′B′与AB重合(平行公理)

∴∠1=∠2.

平行线的性质二:两条平线被第三条直线所截,内错角相等。

简单说成:两直线平行,内错角相等。

启发学生,把这句话“翻译”成已知、求证,并作出相应的图形。

已知:如图2-33,直线AB、CD被EF所截,AB∥CD,

求证:∠3=∠2.

证明:

∵AB∥CD(已知)

∴∠1=∠2(两直线平行,同位角相等).

∵∠1=∠3(对顶角相等),

∴∠3=∠2(等量代换).

说明:如果学生仿照性质一,用反证法或同一法去证,应该给以鼓励。并同时指出,既然性质一已证明正确,那么也可以直接利用性质一的结论,这样常常可以使证明过程简单些。然后介绍或引导学生得出上面的证法。

平行线的性质三:两条平行线被第三条直线所截,同旁内角互补。

简单说成:两直线平行,同旁内角互补。

要求学生仿照性质二,自己写出已知、求证、证明。教师请程度较好的学生上黑板板演,并巡视课堂,帮助有困难的学生克服困难,最后对黑板上学生的板书进行全班订正。

已知:如图2-34,直线AB、CD被EF所截,AB∥CD.

求证:∠2+∠4=180°.

证法一:

∵AB∥CD(已知),

∴∠1=∠2(两直线平行,同位角相等),

∵∠1+∠4=180°(邻补角),

∴∠2+∠4=180°(等量代换).

证法二:

∵AB∥CD(已知),

∴∠2=∠3(两直线平行,内错角相等).

∵∠3+∠4=180°(邻补角),

∴∠2+∠4=180°(等量代换).

例已知某零件形如梯形ABCD,现已残破,只能量得∠A=115°,∠D=100°,你能知道下底的两个角∠B、∠C的。度数吗?根据是什么?(如图2-35).

解:∠B=180°-∠A=65°,

∠C=180°-∠D=80°.(根据平行线的性质三)

小结:平行线的性质与判定的区别:

1.从因果关系上看

性质:因为两条直线平行,所以……;

判定:因为……,所以两条直线平行。

2.从所起作用上看

性质:根据两条直线平行,去证两角相等或互补:

判定:根据两角相等或互补,去证两条直线平行。

三、作业

1.如图,AB∥CD,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?

2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果∠B=40°,∠2=75°,那么∠1、∠3、∠C、∠BAC+∠B+∠C各是多少度,为什么?

3.如图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得到哪些角相等?并简述理由。

教后记:.

学生学习了这个平行线的性质后,不能理解它的用途,两直线平行不知道应该是哪些角应该相等,哪些角应该互补,哪个是前提哪个是结论不能充分的理解。导致使用的错误。应加强这方面的训练。学生图形的认识能力仍有待提高。

布置作业 篇2

(一)必做题

课本第99~100页A组第11、12题.

初中数学《平行线的性质》教案 篇3

今天我说课的题目是,这节课所选用的教材为北师大版义务教育课程标准八年级教科书。

一、教材分析

1、教材的地位和作用

本节教材是初中数学xx年级册的内容,是初中数学的重要内容之一。一方面,这是在学习了xx的基础上,对xx的进一步深入和拓展;另一方面,又为学习接下来的知识奠定了基础,是进一步研究xx的工具性内容。因此本节课在教材中具有承上启下的作用。

2、学情分析

学生在此之前已经学习了xx,对xx已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于xx的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

3、教学重难点

根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:

难点确定为:

二、教学目标分析

根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:

1、知识与技能目标:2、过程与方法目标:3、情感态度与价值目标:

三、教学方法分析

本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

四、教学过程分析

为有序、有效地进行教学,本节课我主要安排以下教学环节:

(1)复习就知,温故知新

设计意图:建构主义主张教学应从学生已有的知识体系出发,xx是本节课深入研究xx的认知基础,这样设计有利于引导学生顺利地进入学习情境。

(2)创设情境,提出问题

设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。

通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环。

(3)发现问题,探求新知

设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳。

(4)分析思考,加深理解

设计意图:数学教学论指出,数学概念(定理等)要明确其内涵和外延(条件、结论、应用范围等),通过对定义的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第xx环节。

(5)强化训练,巩固双基

设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课☆☆标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

(6)小结归纳,拓展深化

小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体地位,让学生畅谈本节课的收获、

(7)当堂检测对比反馈

(8)布置作业,提高升华

以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

以上是我对本节课的见解,不足之处敬请各位评委谅解!谢谢。

师生互动活动设计 篇4

1.通过引例创设情境,引入课题.

2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.

3.通过学生讨论,完成课堂小结.

平行线的性质教案 篇5

【教学目标】

◆知识目标:理解掌握平行线的性质并能应用

◆能力目标:培养学生形成观察辨别、逆向推理等数学方法,培养学生良好的创造性思维能力、逆向思维能力和严密的推理过程。

◆情感目标:通过多种教学活动,树立自信,自强,自主感,由此激发学习数学的兴趣,增强学好数学的信心。

【教学重点、难点】

◆重点:平行线的。性质是重点

◆难点:例4是难点

【教学过程】

一、知识回顾:

1、平行线的判定

2、平行线的性质

二、1、合作学习:

如图,直线AB∥CD,并被直线EF所截。∠2与∠3相等吗?∠3与∠4的和是多少度?思考下列几个问题:

(1)图中有哪几对角相等?

(2)∠3与∠1有什么关系?∠4与∠2有什么关系?

2、你发现平行线还有哪些性质?

平行线的性质:

CFA432DE1B两条平行线被第三条直线所截,内错角相等。简单地说,两直线平行,内错角相等。

两条平行线被第三条直线所截,同旁内角互补。简单地说,两直线平行,同旁内角互补。

3、做一做:

如图,AB,CD被EF所截,AB∥CD(填空)

若∠1=120°,则∠2=()∠3=-∠1=()

4、例3如图1-14,已知AB∥CD,AD∥BC。判断∠1与∠2是否相等,并说明理由。

思考下列几个问题:

(1)∠1与∠BAD是一对什么的角?它们是否相等?为什么?

(2)∠2与∠BAD是一对什么的角?它们是否相等?为什么?

(3)那么∠1与∠2是否相等?为什么?解:∠1=∠2 ∵AB∥CD(已知)

∴∠1+∠BAD=180°(两直线平行,同旁内角互补)∵AD∥BC(已知)

∴∠2+∠BAD=180°(两直线平行,同旁内角互补)

E1B3DA2FCD1A2BC图1—14∴∠1=∠2(同角的补角相等)

讨论:还有其它解法吗?如不用“两直线平行,同旁内角互补”这个性质是否可以解?

5、练一练:(P、14课内练习

1、2)

6、例4如图1-15,已知∠ABC+∠C=180°,BD平分∠ABC。

∠ABCBD与∠D相等吗?请说明理由。思考下列几个问题:

(1)AB与CD平行吗?为什么?

(2)∠D与∠ABD是一对什么的角?它们是否相等?为什么?

(3)∠CBD与∠ABD相等吗?为什么?

解:∠D=∠CBD ∵∠ABC+∠C=180°(已知)

∴AB∥CD(同旁内角互补,两直线平行)∴∠D=∠ABD(两直线平行,内错角相等)

∵BD平分∠ABC(已知)

∴∠CBD=∠ABD=∠D想一想:是否还有其它方法?(用三角形内角和定理等)

7、练一练:

如图,已知∠1=∠2,∠3=65°,求∠4的度数。

三、拓展

12a34bD图1-15Ccd

1、如图1,已知AD∥BC,∠BAD=∠BCD。判断AB与CD是否平行,并说明理由

2、如图2,已知AB∥CD,AE∥DF。请说明∠BAE=∠CDF D C

ABA图1 B FECD

四、知识整理:

1、平行线的性质:

两条平行线被第三条直线所截,内错角相等。简单地说,两直线平行,内错角相等。两条平行线被第三条直线所截,同旁内角互补。简单地说,两直线平行,同旁内角互补。

2、思维方法:如不能直接证明其成立,则需证明它们都与第三个量相等

3、要注意一题多解

五、布置作业

P、15作业题及作业本

平行线的性质教案 篇6

一、创设实验情境,引发学生学习兴趣,引入本节课要研究的内容。

试验1:教师以窗格为例,已知窗户的`横格是平行的,用三角尺进行检验,发现同位角相等。这个结论是否具有一般性呢?

试验2:学生试验(发印制好的平行线纸单)。

(1)要求学生任意画一条直线c与直线a、b相交;

(2)选一对同位角来度量,看看这对同位角是否相等。

学生归纳:两条平行线被第三条直线所截,同位角相等。

二、主体探究,引导学生探索平行线的其他性质以及对命题有一个初步的认识。

活动1

问题讨论:

我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角。我们已经知道“两条平行线被第三条直线所截,同位角相等”。那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系?(分组讨论,每一小组推荐一位同学回答)。

教师活动设计:引导学生讨论并回答。

学生口答,教师板书,并要求学生学习推理的书写格式。

活动2

总结平行线的性质。

性质2:两条平行线被第三条直线所截,内错角相等。

简单说成:两直线平行,内错角相等。

性质3:两条平行直线被第三条直线所截,同旁内角互补。

简单说成:两直线平行,同旁内角互补。

平行线的性质教案 篇7

教学目标

(1)知识与技能:

探索平行线的性质定理,并掌握它们的图形语言、文字语言、符号语言;会用平行线的性质定理进行简单的计算、证明。

(2)过程与方法:

在定理的学习中,锻炼观察能力,尝试与他人合作开展讨论、研究,并表达自己的见解。

(3)情感态度、价值观:

在课堂练习中,体验几何与实际生活的密切联系。

教学重点

平行线的性质。

教学难点

平行线的性质定理与判定定理的区别。

教学模式

发现教学模式。

教学方法

直观教学法、发现教学法、主体互动法。

教学手段

计算机辅助教学。

教学过程

教学环节

教师活动

学 生活 动

教 学 意 图

复习提 问

复习提问:

判定两直线平行的方法有哪些?怎样用符号语言表述?

思考、回答

了解学生的认知基础,让全体学生对前一节的内容进行回顾,并为新课的学习做准备。

进行新课进行新课

【大屏幕】请每位同学利用手中的条格纸,任意选取其中的两条线作l1、l2,再随意画一条直线l3与l1、l2相交,用量角器量得图中的八个角,并填表(见附录1)

随后同桌同学交换,再次测量、填表。

关注:

对于没有带量角器的学生,鼓励他们在无需测量的。情况下,找出图中各角的度量关系。

画图、测量、填表

思考、动手尝试,方法可能多种多样

激发学生探究数学问题的兴趣,使学生获得较强的感性认识,便于探索两直线平行的性质定理。关注学生的实际操作,以及操作中的思考和学生学习数学的兴趣。

给学生留有充分的探索和交流的空间,鼓励学生利用多种方法探索,这对于发展学生的空间观念,理解平行线的性质是十分重要的。

【提问】能否将我们发现的结论给予较为准确的文字表述?

总结、表述

锻炼学生的归纳、表达能力,鼓励学生敢于发表自己的观点。

【大屏幕】平行线的性质:

定理1。两条平行线被第三条直线所截,同位角相等。简言之: 两直线平行,同位角相等。

定理2。两条平行线被第三条直线所截,内错角相等。简言之: 两直线平行,内错角相等。

定理3。两条平行线被第三条直线所截,同旁内角互补。简言之: 两直线平行,同旁内角互补。

【提问】讨论这些性质定理与前面所学的判定定理有什么不同?

理解、记忆、思考、讨论、回答

进行文字语言的规范。

避免出现概念的混淆,渗透“命题” 与“逆命题”的概念,突破本节课的难点避免出现概念的混淆,突破本节课的难点。

【提问】回忆平行线判定定理的符号语言的表述,参照附录1的图形,将上述性质定理怎样用符号语言表达出呢?

【大屏幕】符号语言:(不唯一)

性质定理1。∵l1∥l2

∴∠1=∠5 (两直线平行,同位角相等)

性质定理1。∵l1∥l2

∴∠3=∠5 (两直线平行,内错角相等)

性质定理1。∵l1∥l2

∴∠3+∠6=180o (两直线平行,同旁内角互补)

思考、一位同学板书。

观察、理解

为今后进一步学习推理打基础,并进行符号语言的规范。

【提问】我们能否使用平行线的性质定理1说出性质定理2、3成立的道理呢?

鼓励学生使用符号语言表述推导过程。

【大屏幕】规范定理的推导过程。

思考、尝试回答

观察

培养学生的逻辑思维能力以及严谨的治学态度。逐步锻炼学生的推理能力,并进一步巩固对定理的理解及语言的规范,感受成功的喜悦,树立学习数学的信心。

例题示范

【大屏幕】例:如图是一块梯形铁片的残余部分,量得∠A=100o,∠B=115o,梯形另外两个角分别是多少度?

思考、尝试运用符号语言进行推理。

要求学生会用平行线的性质进行计算,只需算出所求的度数即可。初次计算格式不一定很完整。

趣味练习

【大屏幕】(见附录2)

思考、讨论、解释结论

寓教于乐,进一步让学生感受“认识来源于实践”。

巩固练习

【大屏幕】巩固练习(见附录3)

积极思考、展开讨论、踊跃回答

循序渐进提高难度、提高灵活运用定理的能力,感受解决有关平行问题的关键,突破难点,并进一步提高用符号语言进行推理的能力。

拓展思路

【大屏幕】探究题(见附录4)

【备注】如果时间不允许的话,该题可作为课后作业,并给予简单的提示。

猜测、讨论,寻找规律

使重点中学学生的思路进一步得以拓宽,初次接触辅助线的添加,使学生能力得以提高。

课堂小结

【提问】本节课我们学习了哪些定理?在表述这些定理时,应注意什么呢?

回顾、归纳

将本节课知识进行回顾。

布置

作业

【大屏幕】布置作业:教材P67的4、5;P68的6、7;P69的11、12

课后完成

课后能进一步巩固,鼓励学生去发现身边的数学问题。

平行线的性质教案 篇8

一、目标分析

1、知识与技能:探索平行线的性质,会用平行线的性质定理进行简单的计算、证明;了解平行线的性质和判定的区别。

2、过程与方法:通过学生动手操作、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。

3、情感、态度与价值观:情境的创设,使学生认识到数学来源于生活又为生活服务,从而认识到数学的重要性。通过对平行线的性质的推导过程,培养学生严密的思维能力。

二、教学重点、难点

重点:平行线的三个性质及运用。

难点:平行线的性质定理的推导及平行线的性质定理与判定定理的区别。

三、教学过程

1、创设情境引入

(1)、我们的生活离不开电,生活中的电是通过两条互相平行的导线送到千家万户的。输电线路在某处转了一个弯,已知转弯后的两条导线中的一条和原来的。两条导线中的一条之间的夹角是130°,那么这条导线和原来的另一条导线之间的夹角是多少度呢?学习了这节课后我们就很容易知道答案了。

【设计意图】通过生活中的实例引入,既能提高学生的学习兴趣,激发学生探索知识的热情,也能使学生认识到数学来源于生活。

(2)设问:根据同位角相等可以判定两条直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?

【设计意图】:通过复习回忆平行线的判定来引入新课的目的,一是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的不同。

2、探索新知

(1)画两条平行线被第三条直线所截,找出哪些角是同位角,哪些是内错角、同旁内角,并用量角器量一下同位角,确定它们的大小关系。猜想同位角之间的关系。

【设计意图】:画平行线的这个过程主要让学生明白确定平行线性质的前提是要两条平行线,帮助学生区分平行线的性质与判定。

(2)讲解平行线的性质一。

【设计意图】:加深学生的印象,更加牢固的掌握这一知识点,为推导出下面两个性质打好基础。

(3)引导学生大胆猜想两平行线被第三条直线所截得到的内错角、同旁内角之间的关系。讲解推导过程。

【设计意图】:这样设计不仅使学生认识到平行线的三个性质之间的联系,还培养了学生大胆猜测并通过推理验证所猜测的结论的能力,为培养学生自主学习和良好的学习习惯都有帮助。

(4)总结平行线的性质

性质1:两直线平行,同位角相等。性质2:两直线平行,内错角相等。性质3:两直线平行,同旁内角互补。(5)平行线的性质和平行线的判定区别:要强调“平行线的判定是知道了角的关系来得出平行,而平行线的性质是知道两直线平行得角的关系”

3、知识运用

(1)解决引入时提出的问题

(2)利用所学的知识讲解例4和例5

(3)把一条直线平行移动到另一个位置,这两条直线一定平行。讲解例6。

(4)练习P174—175第1、2、3、4题

【设计意图】:通过例题的讲解,使学生认识到平行线的性质的用处,通过练习,使学生对此处知识点更加熟悉。

4、回顾总结

(1)、通过这节课的学习,你有什么收获?你感受最深的是什么?

(2)、这节课得到的平行线的性质与平行线判定的方法有什么区别和联系?你能区分清楚吗?

【设计意图】:通过提出两个问题,让学生自己进行小结,回顾本节课所学的知识,并将本节课学的知识与前一节所学的知识进行比较、整理。有利于学生加以区分和为以后的应用打下基础。

5、作业设计P175第5题

【设计意图】:本题是让学生补充完整解答过程,学生在做作业过程中不但可以更深刻的理解平行线的性质,同时也让学生了接逻辑推理的步骤,培养学生推理的能力。

四、说板书设计平行线的性质

1.平行线的性质:

性质1:例题:练习:性质2:性质3:

2.平行线的性质与判定的区别

【设计意图】:这样设计板书,既简洁明了,又突破了重难点,使学生很容易知道本节课的主要内容,也便于学生进行归纳总结。

五、自我评价

本节课从实际问题引入课题,各个环节自然衔接。在设计上,强调自主学习,让学生在探究过程中进行,观察分析,合理猜想,解决问题体验并感悟平行线的性质,使他们感受到学习的快乐,真正成为学习的主人。农远资源的利用,使学生对本节课的重点内容更加明了,更易使学生接受。通过本节课的学习,学生能基本掌握平行线的性质,并利用性质解决相关问题,学生的逻辑思维能力也将进一步的得到加强

学法引导 篇9

1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.

2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.

平行线的性质教案 篇10

【教学目标】

1。经历从性质公理推出性质2的过程;掌握平行线的性质,并能用它们作简单的逻辑推理;

2。感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用。

【教学重点】

平行线的性质以及应用。

【教学难点】

平行线的性质公理与判定公理的区别。

【对话设计】

〖探索1〗反过来也成立吗

过去我们学过:如果两个数的和为0,这两个数互为相反数。反过来,如果两个数互为相反数,那么这两个数的和为0。这两个句子都是正确的。

现在换一个例子:如果两个角是对顶角,那么这两个角相等。它是对的。反过来,如果两个角相等,这两个角是对顶角。对吗?

再看下面的例子:如果一个整数个位上的数字是5,那么它一定能够被5整除。对吗?这句话反过来怎么说?对不对?

〖结论〗如果一个句子是正确的,反过来说(因果对调),就未必正确。

〖探索2〗

上一节课,我们学过:同位角相等,两直线平行。反过来怎么说?它还是对的吗?完成P21的探究,写出你的猜想。

〖推理举例〗

如果把平行线性质1———"两直线平行,同位角相等"看作是基本事实(公理),我们可以利用这个公理证明平行线性质2:"两直线平行,内错角相等"。

如图,已知:直线a、b被直线c所截,且a∥b,

求证:∠1=∠2。

证明:∵a∥b,

∴∠1=∠3(__________________)。

∵∠3=∠2(对顶角相等),

∴∠1=∠2(等量代换)。

〖探索3〗下面我们来证明平行线的性质3:两直线平行,同旁内角互补。请模仿范例写出证明。

如图,已知:直线a、b被直线c所截,且a∥b,

求证:∠1+∠2=180?。

证明:

〖探索4〗

如图:直线a、b被直线c所截,

(1)若a∥b,可以得到∠1=∠2。根据什么?

(2)若∠1=∠2,可以得到a∥b。根据什么?根据和(1)一样吗?

〖练习1〗如图,已知直线a、b被直线c所截,在括号内为下面各小题的'推理填上适当的根据:

(1)∵a∥b,∴∠1=∠3(___________________);

(2)∵∠1=∠3,∴a∥b(_________________)。

(3)∵a∥b,∴∠1=∠2(__________________);

(4)∴a∥b,∴∠1+∠4=180?

(_____________________________________)

(5)∵∠1=∠2,∴a∥b(___________________);

(6)∵∠1+∠4=180?,∴a∥b(_______________)。

〖练习2〗

画两条平行线,说出你画图的根据;再任意画一条直线和这两条平行线都相交,写出所生成的角当中的一对内错角,并说明这一对角一定相等的理由。

〖作业〗

P25。1、2、3、4。

一键复制全文保存为WORD
相关文章