作为一名专为他人授业解惑的人民教师,常常需要准备教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。教学设计应该怎么写呢?读书之法,在循序而渐进,熟读而精思,如下是可爱的小编阿青给家人们收集整理的圆的周长教案【优秀14篇】,仅供借鉴,希望大家能够喜欢。
教学内容:
圆周长计算公式的推导、周长计算(课本第62——64页的内容、练习十五第1题)。
教学目标:
1、认识圆的周长,理解圆周率的意义。
2、掌握圆周长的计算公式,会用公式正确计算圆的周长。
3、介绍祖冲之在圆周率方面的成就,进行爱国主义教育。
教学重难点:
1、圆的周长公式推导及运用公式计算圆周长是重点。
2、通过实验找出圆的周长与直径的关系—圆周率是难点。
3、关键是让学生动手操作测周长与直径。
教学准备:
学生准备:大小不同的圆柱物体,光盘。直尺或三角板、绳子。
老师准备:小黑板
教学过程:
一、复习铺垫(5分钟)
1、小黑板出示
(1)
(2)
10厘米 6分米
2、提出问题:
同学们,老师要用铁丝分别做成上面两个图形的框架,
(1)请同学们帮助老师算一算每个图形需要用多长的铁丝?
(2)、每个图形需要用多长的铁丝,是求什么的?
(3)什么是周长?周长的单位有哪些?
(4)、要求图(1)、图(2)的周长应该知道什么条件?
二、探索新知(25分钟)
(一)认识圆的周长
1、出示:圆的图形 和其他实物圆。
2、提问:
(1)这是一个什么形实物?
(2)老师要用铁丝给它箍紧,需要用多长的铁丝,是求什么的?圆周长指哪儿?
3、感知圆的周长: 让学生拿出光盘或其它实物圆摸一摸,进行感知。
4、怎样才能知道一个圆的周长呢?让学生猜一猜,说一说,。
(二)提示课题
在现实生活中,有很多的圆形物体的周长测着很不方便。我们能不能也像计算长方形、正方形周长一样找到计算圆周长的计算公式呢,今天我们一起来探讨如何找到圆周长的计算公式,来计算圆的周长。
板书课题——圆周长计算
(三)圆的公式推导
1、猜一猜,想一想,动手操作(8分钟)
(1) 提问:通过前面复习,我们知道长方形的周长与它的长和宽有关,正方形的周长与它的边长有关。那么请同学们想一想:
圆的周长与它的什么条件有关?
独立思考后,前后桌四人交换意见。
学生汇报:圆的周长和直径(或半径)有关。
继续提问:它们之间到底有什么的关系呢?
故事激趣
我国古代有一位伟大的数学家和文学家祖冲之就发现了圆的周长与它的直径之间的关系,这个发现是在1500年前。今天我们各位同学也当一回科学家,进行一次研究,来发现圆周长与直径之间到底有什么关系。
(2)动手实验:(四人一组,合作完成) (一组测一个)
a、取出圆形纸板,量出圆形纸板的直径。
b、用绳子绕圆形纸板一周,绕圆一周的绳子长度,就是这个圆形的周长,然后测出绳子长度。 c、填到书中表内。
d、算出周长和直径的比值。
e、 汇报,老师把表画在小黑板上,并填表。
2、观查数据,发现规律:(5分钟)
观察表中数据,说一说你有什么发现?(四人一组,共同讨论,)
小组汇报:
同一个圆,它的周长是它的直径的3倍多一些。
3、认识圆周率(2分钟)
(1)在学生发现圆周长与它的直径关系的基础上,老师明确:
刚才每一组同学测的圆大小都不同,但发现:任意一个圆的周长与它的直径的比是一个固定的数。即一个圆的周长是它的直径的3倍多一点。我们把这个比值,即这个固定的数(不变的数)给它起个名字叫圆周率。用字母π表示。 板书:圆周长=π 或 圆周长:它的直径=π 它的直径
(2)让学生读一读( Pài )写一写。
(3)了解π的值。
A、π是一个无限不循环小数,π=3.1415926535.。.。.。.。.。
B、在实际应用中一般只取它的近似值,即π≈3.14.
4、圆周长公式推导:(5分钟)
老师:如果已知圆的直径,如何计算圆的周长。
圆周长= π×直径
如果周长用C表示:字母公式C=πd
知道半径,怎样求周长C=2πr
( 四)应用公式(2分钟)
教学例1:
(1)出示例题:圆形花坛的直径是20米,它的周长是多少米?
(2)学生读题并尝试列式计算。
(3)学生板演:3.14×20=62.8(米)
说明:解题时可以不写计算公式
π取两位小数3.14,计算中不必使用 ≈ ,直接用 = 号。
三、巩固练习(8分钟)
1、 完成课本64页做一做。
2、完成练习十五第1题。
3、补充作业。判断题:
(1)圆的周长刚好是直径的3.14倍。
(2)大圆的圆周率大,小圆的圆周率就小。
(3)π是两位小数。
(4)圆的周长等于它的半径的2π倍。
(5)求周长,直径是唯一条件。
四、课堂小结(2分钟)
本节课我们认识了圆的周长,并且通过实验知道,圆有大小,但每一个圆周长与它的直径的比的比
值都相等,并且是一个固定的数,这个数叫圆周率,用π表示。从而找到了计算圆周长的公式,周长=直径 × π或半径×2×π。
五、布置作业:课堂作业
六、板书设计圆周长计算
圆周长=π(圆周率) 周长是直径的3倍多一点 (即 周长是直径的π倍 ) 它的直径, 圆周长= π×直径
因为d=2r 圆周长=π×半径 ×2
π是一个无限不循环小数,π=3.1415926535 C=πd C=2πr
注:(1)在实际计算中,π取近似值保留两位小数约等于3.14 。
(2)π在计算的应用中,结果不用“≈”号,而用“=”号。
3.14×20=62.8(米)
答:圆形花坛的周长是68.2米
七、课后记
《圆的周长》是在学生学习了正方形周长的基础上进行教学的。由复习老知识引入课题,目的是激发学生的探究积极性,然后我让学生自己推导出圆的周长公式,让学生以小组为单位进行操作:用“化曲为直”的绕线法测量圆的周长,并做好相应记录,填好表,为下一步探究奠定基础,接下来让学生猜一猜、想一想圆的周长与直径有什么关系,进而找到圆的周长与直径的关系,推出圆周率,得出圆的周长公式。最后让学生把得出的圆的周长公式应用到练习中。
本节课中,我觉得比较成功的是:
首先,在创设情境时,我用旧知引新知导入新课,以学生的兴趣为出发点,激发学生的探索欲望,为后面的学习做好铺垫。其次,学生经过自主探究、合作、展示等教学活动,使学生深切地体会到“化曲为直”的数学思想方法,与此同时,我想学生提出质疑测量、学生通过小组合作的形式验证猜想,在理解了圆的周长与直径的关系及圆周率的基础上,推导出圆的周长的计算公式,再回到课前情境中,使学生在掌握新知识的基础上,解决实际问题,培养学生的应用意识。 在本节的教学中,我发现情境导入吸引了学生的注意,并对新知识产生了浓厚的兴趣,由于前面“正方形周长及圆的认识”知识的成功铺垫,因此本节课学生通过动手操作、自主探究、合作交流‘展示等活动,理解了“化曲为直”的数学思想方法。在推导公式过程中,因为亲自经历了小组内探讨圆的周长与直径的关系的过程,所以学生能较为容易地推导出圆的周长计算公式。
本节课中也存在一些不足之处:比如:在对学生的表达进行评价是艺术性略显不足,应多鼓励,使学生获得成功的体验;另外,我对课堂的掌控和把握能力还需提高,虽然对教材进行了较为深入的分析,但还没有做到不彻底,小组合作要求不到位。
在今后的教学工作中,我将弥补以上不足之处,提高个人的理论修养,使自己的教学趋于完美。
教学内容:
圆的周长
教学重点:
理解圆周率的意义。
教学难点:
探究圆的周长的计算方法。
教学过程:
一、导入新课
故事导入,观看后提问:
1.谁获胜呢?
2.它们对自己跑的距离产生了怀疑,都说自己跑的远……
3.拿起一个圆用手模一摸感知什么是圆的周长。
二、新课
(一)介绍测量方法:
1.绳测法。
2.滚动法。
3.教师引导学生运用“化曲为直”的思想,知道绳测法和滚动法测量圆的周长,并让学生感知这两种方法的局限性
(二)猜想。(三)实验。
1.小组协作。
周长c (厘米)
直径d (厘米)
周长与直径的比值 (保留两位小数)
2.汇报测量和计算结果。
提问:通过这些实验和统计,你发现圆的周长和直径有没有关系?有怎样的关系?
学生:发现每个圆的周长总是直径的3倍多一些。
(四)验证结论。
(五)阅读理解有关圆周率的知识。
三、练习
计算方法:
1.能说出圆周长的计算方法吗?
c=∏d c=2∏r(板书)
2.根据条件,求下面各圆的周长。
d=10cm r=10cm
3.(略)
4.现在你明白小龟和小兔谁跑的路程长吗?谁跑得快?
5.拓展练习。
四、总结。
你学会了什么?请主动用你学会的知识去解决生活中有关圆的周长的问题。
教学目标:
⒈使学生知道圆的周长和圆周率的含义。让学生体验圆周率的形成过程,探索圆的周长的计算公式,能正确计算圆的面积。
⒉使学生认识到运用圆的周长的知识可以解决现实生活中的问题,体验数学的价值。
⒊介绍古代数学家祖冲之对圆周率的研究事迹,向学生进行爱国主义教育。
教学重点、难点
教学重点:理解和掌握求圆周长的计算公式。教学难点:对圆周率π的认识。
教学过程设计
一、创设情境,引发探究
⒈"几何画板"《米老鼠和唐老鸭赛跑》演示:休息日,米老鼠和唐老鸭在草地上跑步,米老鼠沿正方形路线跑,唐老鸭沿着圆形路线跑。
⒉揭示课题
⑴要求米老鼠所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量出它的什么就可以了?
⑵要求唐老鸭所跑的路线,实际上就是求圆的什么呢?
板书课题:圆的周长
二、人人参与,探究新知
(一)教具演示,直观感知,认识圆周长。
教师出示教具:铁丝圆环、圆片,让学生观察围成圆的线是一条什么线,提问:这条曲线就是圆的什么?
(二)理解圆周率的意义
活动一:测量圆的周长
⒈教师提问:你能不能想出一个好办法来测量它的周长呢?
①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。则师生合作演示量教具圆铁环的周长。
然后各组分工同桌合作,量出圆片的周长。
②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作。测出圆片的周长。
⒉用"几何画板"《小球的轨迹》演示形成一个圆。
提问:小球的运动形成一个圆。你能用刚才的方法测量出圆的周长吗?
⒊小结:看来,用滚动、绕线的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?
活动二:探究圆周长与直径的关系,认识圆周率。
⒈圆的周长与什么有关。
⑴启发思考
正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关系呢?
⑵利用不同长度的小球形成的三个圆,让学生观察思考考:。哪一个圆的周长长?圆的周长与它的什么有关呢?
得出结论:圆的周长与它的直径有关。
⒉圆的周长与直径有什么关系。
⑴学生动手测量,验证猜想。
学生分组实验,并记下它们的周长、直径,填入书中的表格里。
⑵观察数据,对比发现。
提问:观察一下,你发现了什么呢?
(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)
⑶出示"几何画板"《周长与直径的关系》演示。
⑷比较数据,揭示关系。
正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系吗?猜猜看,圆的周长可能是直径的几倍?
学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。
提问:这些周长与直径存在几倍的关系,(3倍多一些),是不是所有的圆周长与直径都是3倍多一些呢?教师演示"几何画板"最后师生共同总结概括出:圆的周长总是直径的3倍多一些,板书:3倍多一些。
⒊认识圆周率
⑴揭示圆周率的概念。
这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母π表示。板书:圆周率
现在,谁能说说圆的周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长÷直径=π
⑵介绍π的读写法
⑶指导阅读,了解中国人引以为自豪的历史。
提问:你知道了什么?
(三)推导圆的周长计算公式。
⑴提问:已知一个圆的直径,该怎样求它的周长?板书:C=πd
请同学们从表格中挑一个直径计算周长,然后跟测量结果比比看,是不是差不多?
⑵提问:告诉你一个圆的半径,合计算它的周长吗?怎样计算?板书C=2πr。
提问:"几何画板"上的小球轨迹形成的圆你会求周长吗?
学生和自己的伙伴一起解答例1和做一做并说出这两题用哪个公式比较好?
三、应用新知,解决问题
1、和自己的伙伴一起解答例1和做一做
2、说出这两题用哪个公式比较好?
四、实践应用,拓展创新。
⒈基础性练习:
(1)求下列各圆的周长(几何画板)
r=3厘米 d=4厘米
(2)、我们现在有办法求唐老鸭跑的路程吗?
⒉、判断
①圆的周长是直径的π倍。
②大圆的圆周率小于小圆圆周率。
3、提高练习
在我们校园内有一棵很大的树,你们有什么办法可以测量到这棵大树截面的直径?
五、总结评价,体验成功
1、你学到了什么?
2、你是怎么学到的?
六年级上册数学(p62——64)
一,教学目标
1,理解圆周率的意义,掌握圆周率的近似值。理解和掌握圆的周长的计算公式,并能应用它解决简单的实际问题。
2,培养学生的观察,比较,概括和动手操作能力。
3,结合我国古代数学家祖冲之的故事,对学生进行爱国主义教育。
二,教学重点
掌握并理解圆的周长,公式推导过程。
三,教学难点
理解圆周率的意义。
四,教学过程
一,创设情境,提出问题
1,师出示圆形桌布,提出在桌布的边缘镶上一圈花边。要想知道至少准备多长的花边,怎么办 请你帮忙想想办法。
2,你们知道这圈花边的边长是什么 (生:圆的周长。)
3,用直尺测量圆的周长,你感到方便吗 能不能找到比较简便的方法
二,师生共同提出假设
1,请学生回忆正方形周长和边长的关系。(边长×4)
2,师:能不能求圆周长的同时也找到这样的倍数关系呢 测量圆的什么比较方便呢
生:半径,直径……
3,请生先画几条长短不一样的直线作直径画圆。师:观察自己画的圆,你发现了什么
学生仔细观察:分组讨论研究圆的周长和直径是否存在倍数关系。
4,师:你估计圆的周长是其直径的几倍
生猜想:3倍左右。
5,师:你有办法验证吗 生讨论
教学意图:正方形的周长只与边长这个数有关系,这点与圆的周长计算方法相似,本环节选择这一教案内容,用于复习旧知和引入新知,渗透的作用是非常有效的。
三,合作交流,发现规律
1,学生思考后可能出现的以下办法:
⑴ 用一根线(或纸条)绕圆一周,剪去多余的部分,再拉直量出它的长度,得到圆的周长。
⑵ 把圆放在直尺上滚动一周,直接量出圆的周长。
师启发学生:用滚动,绳测的方法可以测出圆的周长,但有局限性,那么:我们能不能探讨出一种求圆的周长的普遍规律呢
⑶ 学生在小组内动手操作,测量进行验证。
直径(cm) 周长(cm) 周长是直径的几倍
2 6.2 3倍多一点
3 9.1 3倍多一点
4 12.9 3倍多一点
2,小结
a,"圆的周长÷直径"等于3倍多一点,经过科学家精密的论证,计算发现这个"3倍多一点"是一个固定数叫圆周率3.14159……是一个无限不循环小数,我们在计算时通常取3.14,用字母π表示(请学生写一写)
b,结合圆周率进行爱国注意教育。
c,师生共同推导计算圆的周长公式。
教学意图:在圆的周长测量中,充分发挥学生的主体地位,课堂上,使学生手脑都动起来,通过各种形式的个人实践及小组合作实践使学生亲而义举的发现规律,掌握知识,学生不是在学习知识,而是在探究,实验,发现新知,这样的课堂,可以使学生的动手,动脑,动嘴,合作的能力都能得到锻炼提高。
四,实践应用,拓展新知
1,学生尝试求圆的周长
d=2cm r=3.5cm d=10cm
2,圆形花坛的直径是20cm,它的周长是多少m
3,请同学们画一个周长是15cm的圆。
教学意图:设计有坡度的练习,目的是让学生运用圆周长的计算公式反映生活中的实际问题,巩固已经学过的公式,培养学生的学习兴趣,提高学生学习探索的能力。
五,总结评价,体验成功
1,通过这节课的学习,你学会了什么
2,课后思考:从边长是4cm的正方形中画出一个最大的圆,这个圆的周长是多少cm
板书设计:
圆的周长
围成圆的曲线的长叫做圆的周长。
c=πd c=2πr
教材分析:圆的周长是九年义务教育六年制小学数学教科书第十一册第四单元的学习内容。重点在于探索圆的周长和圆周率的形成过程。在教学过程中教材创造了一些条件,让学生多做一些实验是实施本目标的重要手段。另外,由于圆的周长的面积公式是小学阶段平面图形的最后一个知识点,在此之前学生学习是在“圆的认识”的基础上进行教学的,并且学生的学习已经经历了长方形、正方形周长公式的探索,这些宝贵的探索经验,对学生发现圆的周长和面积将起很大的作用。所以,从知识的迁移角度,引导学生探索就是实施本目标的重要的教学指导思想。
教学目标:
知识目标:使学生理解圆的周长和圆周率的意义,自主探究经历圆周长的公式的推导过程,能应用圆周长计算公式解决有关实际问题。
能力目标:培养学生自主探究、合作、推理、归纳、总结的能力,形成解决问题策略。
情感目标:培养学生实事求是的态度以及独立思考,质疑创新的习惯。
教学重点:使学生理解和掌握圆的周长的意义及周长计算公式的推导
教学难点:理解圆周率的意义。
教学流程:
一、创设情境,导入新课
1、导言:随着人们生活水平的日益提高,利用假日乘车外出旅游已经成为一种生活时尚。看!,马力一家正乘车到旅游区度假呢!(播放课件)
师:对马力的问题,发表一下你们的见解吧。
生:……
2、揭示课题。
师:看,这是一个车轮,哪位同学愿意用手比划出它的周长?
生:上台演示。
师:谁能用完整的话概括一下:什么是圆的周长?
生:……
引出圆周长的概念:围成圆的曲线的长叫做圆的周长。
【调控策略:尝试信息技术和教学整合,使原本枯燥乏味的题目变得鲜活、生动。鼓励学生大胆发表自己的看法,唤醒求知欲望,使学习和生活紧密相连。】
二、引导探索,展开新课
(一) 测量圆的周长
师:如果要知道这个车轮的周长你有什么好的办法吗?
1、用滚动的方法测量出圆的周长
师:请你上来把测量的方法展示给大家看看。滚动的长度就是圆的周长。
问:你有什么操作要点要提醒大家?
追问:如果要知道那个圆形草坪的周长,也可以让它在直尺上滚着来量吗?
2、用绳子在圆上绕一周,再测出绳子的长短,得到这个圆的周长。
师:请你上来把测量的方法展示给大家看看。这条线的长度就是圆的周长
问:你有什么操作要点要提醒大家?
师:请同学们同桌合作共同体验一下绳绕的测量方法。
3、2005年10月17日是全中国人民都骄傲的日子,你知道吗?神舟六号环绕地球5天安全着路了。神舟六号绕地球第五圈的时候形成的轨迹是个圆形。那么,用绳测和滚动的方法能测量吗?
4.小结:看来,用滚动、绳绕的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?
【调控策略:学生的数学学习不应成为简单的概念、法则、公式的掌握和熟练的过程,而应该更具有探索性和思考性。要求能收集、选择、处理数学信息,并能做出合理的推断和大胆的推测,能结合具体的情景发现、提出和探究数学问题。】
(二)探讨圆的周长与直径的关系
师:看老师耍个小把戏(教师甩动绳系小球,形成一个圆。)
师:你们看的什么?(圆形越来越大就是圆的周长越来越大)
师:仔细观察,圆的周长与什么有关呢?(直径或半径)
师:圆的周长与直径之间是否存在着固定的倍数关系呢?猜猜看,圆的周长可能是直径的几倍?
(2)学生自己验证:
下面四人小组合作,测量一个实物的周长和直径,并填写表格。小组长要依据小组的实际情况进行分工,提高小组合作的有效性。
(3) 观察数据:
师:仔细观察数据,你发现了什么?
①圆的周长是直径的3倍多一些。板书:3倍多一些。(从圆的周长和直径的比值数据可以看出有的同学测量比较精确,他们用实事求是的态度参与到数学知识的探究中,有的同学测量比较马虎,这种不良习惯会成为你迈向成功的绊脚石。)
②直径越长圆的周长就越长,但圆周率始终不变。
3、认识圆周率。
(1)揭示圆周率的概念。
师:这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。板书:圆周率
(2)介绍圆周率的历史
师:圆周率是怎么得来的?大家一起一下各自收集到的信息。
师:我们确实应该为前人的聪明、智慧感到自豪和骄傲。后来瑞士的数学家欧拉用希腊字母π代表圆周率。(板书:π)圆周率是一个无限不循环小数。在计算时,如果用这个无限不循环小数参加计算是不方便的,故通常将π取两位小数。
(板书:π≈3.14)
(3)师:既然π是个固定的值了,只要知道什么就能求圆的周长?
板书:c=πd c=2πr
(4)推导圆的周长计算公式。
●提问:甩小球形成的圆的周长你会求吗?
(5)小结:要求圆的周长,一般需要知道它的直径或半径。知道圆的直径,怎样来计算周长?知道圆的半径,怎样来计算周长?
师:到了检验大家学习效果的时候了。
【调控策略:在认真分析教材、研究教材的基础上进行教材整合,使学生形成良好的知识结构。让学生以小组合作的形式进行探究,培养学生的合作意识和创新精神。问题的呈现方式体现多样化,以丰富学生的视野,扩展学生的思维。】
三、初步运用,巩固新知
1. 出示例1 :学生尝试练习,反馈评价。
2、神六绕地球第5周轨道是圆形的,半径是6693千米,你想提什么问题?
3、走钢丝
4.看书质疑。
【调控策略:通过联系实际解决问题,放飞学生思维,领略数学的奥妙,培养学生思维的科学性、深刻性、灵活性、多样性。】
四、照应启思,总结新课
1、组织学生说说收获。!
同学们从四个圆片的周长、直径的变化中(板书:变),看出了圆周率始终不变(板书:不变)。如果我们长期坚持这样从变化中看出不变,你就会变得越来越聪。
2、照应开头。 我们再来看看马力的问题,你能求出马力行驶的路程吗?怎么算?
3、拓展延伸。
(出示右图)现在,绿蚂蚁沿着大圆跑一圈,红蚂蚁沿着两个小圆"∞"的路线跑一圈,谁先跑到?(两只蚂蚁的速度相同,比划路线。)接下来我们用具体数据来验证猜测的结果。
教学内容:冀教版《数学》六年级上册第六单元一课时
教学目标:
1、在观察、测量、讨论等活动中经历探索圆的周长公式的过程。
2、理解并掌握圆的周长公式,会用字母表示,能运用周长公式进行计算。
3、体验数学与日常生活的紧密联系,了解圆周率的发展史,激发民族自豪感和探索精神。
课前准备:硬币、直尺、细线、软尺、3个大小不同的圆形纸片、计算器。
教学过程:
一、问题引入,揭示课题。
师:同学们,你们知道我们今天要学习什么吗?
生:通过看作业纸,我知道今天要讲《圆的周长》。
师:其他同学同意他的说法吗?今天我们就一同来学习圆的周长。(板书:圆的周长)课件出示作业纸
师:同学们,通过你们对作业纸的试做和对今天所学内容的预习,相信同学们都有所收获,有的同学可能也有疑虑或者问题,下面就请小组长组织好本组同学把你学会了什么?明白了什么在小组里交流交流,把不明白的也说一说,小组长做好记录,形成问题,待会儿我们汇报。课件出示这些要求
二、小组交流,交换质疑。
师:交流完了吗?小组长们谁先来代表本组汇报汇报?
三、全班交流,形成问题。
生:我们小组明白了
1、圆的周长是围成圆的一周的长度。
2、任何圆的周长总是直径的3倍多一些。
3、圆周率用字母∏来表示,∏约等于3.14。
我们不明白的是:
1、圆的周长与什么有关系?有什么关系?
2、圆的周长怎么求?又是怎么推导的?
3、怎么测量圆的周长。
4、用什么办法可以得到圆的周长?
师:同学们,为了节省时间,其他小组在说的时候就不要重复了,主要是做一下补充。
生:我们组明白了圆周长字母表示形式是c=∏d或c=2∏r
生:我们明白了圆周率是一个无限不循环小数。圆周长和直径半径有关系,怎么得来的还要想想。
师:同学们说的很好,看来大家预习的很充分,问题也提的很有价值,要学习圆的周长首先要明白圆的大小和谁有关系,也就是圆的周长和谁有关系,让我们带着这样的问题一同走进美丽的圆。
四、引导探究、解决问题。
1、初步了解圆的周长和半径、直径的关系。
师:同学们,自行车是一种非常方便的交通工具,我们不仅骑车子上班、上学,有时在周末还会骑车子去郊游,你看,星期天,天气多好呀,亮亮一家骑车子去郊游,仔细观察这幅图,你看到了什么?
生:车子大小不同。
生:聪聪骑得车子轮子最小,爸爸的车子轮子最大。
师:如果这三辆自行车都转动一周,谁走的最远?
生:爸爸的车子走的最远。
师:为什么呢?
生:因为爸爸的车子轮子最大。
师:同学们请看大屏幕,想想圆的周长的长短与圆的什么有关系?屏幕出示三个大车轮的图片
生:与半径有关系,半径越长,周长越长。
生:与直径有关系,直径越长,周长越长。
师:看来同学们都有了统一的认识,你们看这三个圆,哪个圆的周长最长?
生:1号圆。
师:那么圆的周长和直径、半径还有怎样的关系呢?接下来进入我们的探究环节。
2、小组合作探究圆周长与直径、半径的关系。
师:同学们,课前我们分好了四人小组,现在要小组合作了,老师希望每个小组成员都要先听清楚要求再动手去做。
小组合作要求:
1、利用手中的学具测量物品中圆的周长和它的直径。
2、把测量的数据填入记录单中,用计算器算出圆的周长是它直径的几倍。(得数保留两位小数)
3、观察得到的数据,你发现了什么?
师:哪个小组先汇报?先说说你们采用的方法,再说结果。
生:绕线法。
生:滚动法。
师:同学们很聪明,把圆周长这条曲线变成了直线段,这叫做化曲为直。
师:通过刚才的动手操作,你们发现了什么?哪个组说说?
生:圆的周长÷直径=3倍多一些(板书:圆的周长÷直径=3倍多一些)
师:这三倍多一些是多少呢?
生:书上说是3.14。
师:任意圆的周长总是直径的三倍多一些,这个倍数是一个固定不变的数,我们叫做圆周率,用字母∏表示。(板书:圆周率 ∏)
师:今天我们研究的圆周率,早在多年前,我国古人就对此进行过研究。让我们一起去看看吧。
屏幕出示祖冲之
师:同学们,你们有什么想法吗?
生:祖冲之真伟大,我们的祖先真有智慧。
生:我也挺聪明的,我算出来的答案跟祖冲之爷爷的很接近。
师:今天我们计算到了小数点后第12411亿位,这个数有多少呢?如果你一秒钟读一个数的话,大约需要读4万年。并且我们还没有计算到尽头。
师:圆周率的小数点每前进一位,都要付出几代人的努力,看来真理需要我们孜孜不倦的追求。老师希望同学们今后能够像这些科学家一样,勇于探索,不断追求。
师:我们了解到圆周率是一个无限不循环小数,我们在计算的时候只取它的近似值3.14。(板书3.14,擦掉3倍多一些)
师:圆的周长怎么求呀?
生:圆的周长=直径×3.14
师:板书c=∏d 谁来说说你是怎么理解的?
生:c表示圆的周长,d表示直径,∏表示圆周率,
c=∏d
师:如果知道半径,应该怎样写?
生:c=2∏r
师:你是怎么想的?
生:在同一个圆里,直径是半径的两倍。
师:从大家的表情可以看出同学们今天学习的很轻松,这些都得益于同学们充分的预习,老师佩服你们,现在如果给出圆的直径或半径,你能求出圆的周长来吗?能口算的就口算。(课件出示一大一小两个圆,一个半径1厘米,周长6.28厘米,一个直径10厘米,周长31.4厘米)
师:同学们,学到这里,最初的问题还是问题吗?
生:已经都会了。
师:找同学来说说。
生:圆的周长与圆的直径和半径有关系,直径半径越长,周长越长。
生:圆的周长总是直径的3倍多一些,这个数固定不变,是无限不循环小数,叫做圆周率,用字母∏来表示。
生:∏取近似值是3.14。
生:圆的周长等于直径乘圆周率,周长用字母c来表示,字母形式是c=∏d或c=2∏r
生:测量圆的周长有绕线法、滚动法等等。
生:我们现在如果知道直径或半径就能求出圆的周长,知道圆的周长也可以求出直径或半径来。
师:你真会学习,能够举一反三的看问题,我们要向你学习。同学们已经了解了很多有关于圆的周长的知识,现在拿出你们的作业纸,认真审题时候再做。开始吧!
师:老师看同学们大部分题做得很好,很认真,少部分题上理解有偏差,让我们一起看看大屏幕,(屏幕抽出2道题目)说说你对这道题的理解。
师:同学们理解的很到位,做题时一定要认真审题,不能马虎,好,没有做完的同学利用自习课时间再做,接下来我们一起看看圆在生活中的应用。(播放圆的应用)
师:圆象征着团圆,圆圆满满,一个个美丽的圆奇妙的组合在一起,装点着我们的生活,在生活中,有许多成语里也有圆,同学们课下搜集一下,看看谁找的更多。老师也希望同学们在今后的学习生活中能够收获满园。
一、指导思想与理论依据:
《新课标》指出:有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的的重要方式。数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
根据这一理念,在本节课的设计上,我突出两点,一是让学生主动经历数学结论的猜想动手操作,实践验证以及表述的过程;二是对学生放手,还学生自主的空间,自主探究,合作交流的学习方式贯穿课堂的始终。
二、教材及学情分析:
教材是在学生掌握了长方形和正方形周长,并初步认识了圆的基础上学习的。它是学生初步研究曲线图形的基本方法的开始,又是后面学习“圆的面积”以及今后学习圆柱、圆锥等知识的基础。学情分析:学生虽然有计算直线图形周长的基础,但第一次接触曲线图形,概念比较抽象不容易理解,推导圆周长的计算方法、理解圆周率的含义会有一定的困难。
三、教学目标、重点及难点:
1、知识和技能:
使学生直观认识圆的周长,掌握圆的周长的计算方法,理解圆周率的意义,并能正确灵活应用计算公式解决简单的实际问题。
2、过程与方法:
(1)通过组织学生观察和实验等活动,引导学生经历“猜想-验证-归纳、概括”的学习过程,认识圆周率。
(2)经历圆的周长计算公式的发现、探索过程,培养学生分析、抽象、概括,以及发现规律的能力。
3、情感与态度:
(1)通过学生动手操作、发现,激发学习兴趣,使学生体验探究问题的乐趣;
(2)结合圆周率的介绍,使学生受到爱国主义科学精神的教育。
(3)在解决问题过程中,增强应用意识。
教学重点:
让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程理解并掌握圆的周长计算方法。
教学难点:
对圆周率的认识。
教学准备:
⒈圆形物体实物,。
⒉每个学生准备三个大小不同的圆片,一根线,一把直尺。
四、教法:
1、自主探究法。通过学生动手实践,寻求测量圆周长的方法,培养学生动手操作的能力,激活学生的思维。
2、合作交流法。合作交流是学生学习数学的主要方式。通过学生的团结协作,自主探索,讨论交流,培养学生的团结合作精神,激发学生主动学习的兴趣。
五、主要教学环节与设计:
通过以下环节教学本课:
一创设情境,初步感知
二合作交流,探究新知
三实践应用,解决问题
四畅谈收获,课外延伸
六、教学过程:
第一个环节:创设情境,初步感知师:
哪些同学会骑自行车?在骑车时,车轮向前滚动一周,行驶了多长的路程?怎样计算?(出示车轮向前滚动的录像。)
生:求行驶多长的路程就是求圆形的周长。
师:今天就来学习怎样计算圆的周长。
此环节的设计目的:从学生熟悉的自行车入手,让学生感知求车轮滚动一周就是求圆的周长,激发学生学习新知的兴趣。
第二个环节:合作交流、探究新知
(一) 直观感知什么圆的周长通过以下活动帮助学生认识什么是圆的周长。
1、请你指出老师手中圆形物体的周长。准备一些实物有硬币、茶杯垫,让学生用手在圆周上滑摸等方式认识并理解圆的周长。
2、分析比较长方形、正方形和圆的周长各有什么不同?
3、指一指、描一描自己手中圆片的周长。
设计意图:让学生动手摸一摸后,初步感知圆的周长就是圆一周的长度。更增强了对圆周长的感性认识,并形象理解圆周长的意义。
(二)探究圆周长的计算方法
圆周长计算公式的推导这一内容,我安排了三个环节:
1、揭示矛盾,产生探索新知欲望。请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?
预设的几种情况:
(1)“滚动”——把实物圆沿直尺滚动一周;
(2)“缠绕”——用绳子缠绕实物圆一周并拉直;
(3)“折叠”——把圆形纸片对折几次,再进行测量和计算;
小结:以上的几种方法都是要“化曲为直”。
出示地球图片。
如果要计算地球赤道一周的长度,用刚才的绕线法、滚动法显然都无法测量怎么办?我们需要探讨求圆周长的一般方法。
设计意图:
1、这个过程中让学生明白 “缠绕”、“滚动” 的方法是有局限性的,引发其探索“计算公式”的积极性、必要性,为深入研究圆周长的计算问题作好了“心理”铺垫。这样的矛盾,反而更能激发学生的求知欲。
2、操作实验,探究圆周长计算方法在这一内容中,探究圆周率,理解圆周率是本课的难点,因此我设计让学生分小组合作,通过“猜想——实验验证——归纳概括得到结论”来完成。
(1)猜想,目的是让学生体会周长与直径之间的关系,重点解决“周长与什么有关”的问题。
师:圆的周长与它的什么有关呢?
生:圆的周长与它的直径有关。圆直径长,周长就大;直径短,圆周长就小。
(2)实验验证,目的是让学生发现周长与直径之间固定的倍数关系,重点解决“周长与直径有怎样的实质关系”的问题。
师:我们知道正方形周长是边长的4倍,那么圆的周长是直径的几倍呢?我们能不能像求正方形周长那样找到求圆周长的一般方法呢?
请同学们分组做个小实验,请利用手中的学具,用你喜欢的方法验证圆的周长与直径的倍数关系,记录在表格中。请你按照“我们组利用什么方法——过程怎样——结果如何”的顺序汇报实验过程
小组汇报:
生:我们测量的第一个圆直径是10厘米,周长是31厘米,周长是直径的3.1倍。第二个圆直径是2厘米,周长是6.5厘米,周长是直径的3.25倍。第三个圆直径是5.5厘米,周长是16.5厘米,周长是直径的3倍。
师:通过计算你们发现了什么?
生:每个圆的周长,都是它的直径长度的3倍多一些。
追问:那么是不是所有的圆周长与它直径都有这种关系呢?
最后师生共同概括出:任何一个圆的周长总是它的直径长度的3倍多一些。
师:由于测量时存在误差,导致结果不太一样,这很正常。你们的研究结果已经很接近数学家的结果了。谁知道我们把这个3倍多一些的数叫做什么?
生:圆周率。
师:你对圆周率还有哪些了解?
这个3倍多一些的数经过数学家周密计算发现是一个固定不变的数,我们把这个倍数叫做圆周率。读作π。对圆周率的发现最杰出的贡献者是祖冲之。圆周率是一个无限小数,在科技飞速发展的今天,计算机已经计算到了小数点后上亿位。小学阶段取它的近似值为3.14。板书:π≈3.14(出示相关的资料)
设计意图:通过同学们在小组中操作、交流、观察等活动,亲历感悟发现知识,达到理解的目的。圆周率有的学生早已知道,圆周率的有关知识是在师生共同补充交流中得到的,体现以学生为主体。祖冲之的事迹是一个非常好的爱国主义教育的典型。使学生感受到中国文化的博大精深,发展学生的情感态度价值观目标。
(3)得出结论师:你知道圆周长的计算方法了吗?
生:知道。
板书公式:C=πd,C=2πr
设计意图:推导圆周长公式,解决好了圆周率的问题,圆的周长的计算方法只是水到渠成的结果。
第三个环节:实践应用,解决问题
这一环节是对我们所探究结果的运用,即运用圆周长的计算公式来解决生活中的实际问题。
1、解决刚上课时提出的问题:车轮向前滚动一周,行驶了多长的路程?做到首尾呼应。
2、设计了三道有梯度的练习:
①d=5米, C=?
②r=5厘米 C=?
③C=6.28米d=?
3、明辨是非,下面的说法对吗?
①π=3.14
②大圆的圆周率小于小圆的圆周率。
③圆的周长是它的半径的2π倍。
意图:设计有关圆周率的判断,是帮助学生巩固新概念,加深对圆周率的理解。
第四个环节:畅谈收获,课外延伸作业:
赤道就像地球的“腰带”,它的长度大约是4万千米。你知道地球的半径大约是多少吗?
设计意图:在课堂即将结束时,我设置了与前面相呼应的求赤道周长的课外的拓展。这样的设置,把课堂的教学延伸到课外,提高学生的学习能力。
你有什么收获?(引导学生总结所学内容,学习方法,获得情感态度等体验。)
七、板书设计:
圆的周长
化曲为直 圆的周长÷直径=圆周率
C÷d=π 3.14×20=62.8(英寸)
C= πd 答:车轮向前滚动一周,行驶了62.8英寸。
C=2πr
教学目标
1、理解圆周长的概念,明白周长是一个长度,培养学生的迁移能力。
2、会用滚动和绕的方法测量圆的周长,理解圆周率的意义,明白圆周率π是一
个无限不循环小数。
3、掌握圆的周长计算公式,并会正确运用公式求圆的周长。
4、运用迁移类推,小组合作,教师引导
5、使学生懂得圆周率的来历,结合内容进行爱国主义教育。
教学过程:
一、复习(课件出示)
1.在同一个圆里,直径是半径的几倍?用什么公式表示?
2.“所有的半径都相等,所有的直径都相等。”这句话对吗?为什么?
3.什么是长方形的周长?什么是正方形的周长?它们的周长公式各是什么?
(学生回答)
导入:以前所学的求直线形的周长都是求几条线段长度的和,那么,圆(手拿一圆)这闭合曲线图形的周长怎样求呢?这就是我们今天要学的内容。(板书课题:圆的周长。)
二、新授
1.圆周长的意义。
什么是圆的周长呢?请同学们拿出准备好的圆,跟老师一起来摸圆的一周,请同学们试着说一说什么叫做圆的周长。(课件展示圆周长)
教师概括:围成圆的曲线的长叫做圆的周长。可用字母“c”来表示。(出示课件)
2、圆周率的意义
1)要想知道一个圆的周长是多少?我们可以怎样做?用测量的方法你是怎样测量的?(请同学们再次拿出准备好的硬纸圆,和准备好的工具小组合作,用不同的方法来得到圆的周长,一会小组派代表来说明你是用什么方法得到圆的周长的。)
2)小组汇报,上台演示
(可用滚动法、绕绳法、拉伸法)
提示:以上得到圆周长的方法方便吗?是否对求任何圆的周长都适用呢?(出示课件:摩天轮)因此我们需要寻求一种更好更科学测量方法。
3、圆周长与直径的关系
1)讨论:我们知道要求正方形的周长,只需要知道边长就行了。用边长×4就得到正方形的周长了。那么圆的周长与圆的哪部分有关系呢?带着这些问题来看一看(以下演示)从中你知道了圆的周长与圆哪部分有关?(直径、半径)说明理由
2)提问:圆的周长与直径、半径有怎样的关系呢?下面就让我们以直径为例做个实验。(请同学们拿出课前发给每组的记录单,按表中的要求把刚才测量的圆的周长填在表内,在测量一下这个圆的直径是多少填在表内,求出它们的比值)观测得到的数据你会发现什么?(课件出示表格及要求)
周长c(毫米)
直径d(毫米)
《圆的周长》教学设计 的比值(保留两位小数)
你们的发现:
3)小组交流,汇报发现的结果。
明确:圆的周长总是直径的3倍多一些
教师:实际上圆的周长和直径的比值是一个固定的数,因此我们把圆的周长和直径的比值叫做圆周率,用字母π表示(跟老师读、写)(出示课件)
习题:(判断课件)
4)那么π是多少呢?先让来了解一下有关圆周率(π)的小资料。(出示资料)(通过阅读你知道了什么?)
a、π是无限不循环小数
b、计算时一般只取它的近似值 π≈3.14
c、祖冲之把圆周率的值精确到7位小数,比欧洲早一千年。
d、圆周率应在3.1415926和3.1415927之间。
4、圆周长公式的推导。
因为:圆周率=圆的周长比圆的直径
所以:圆的周长=圆周率×直径 用字母表示为:c=πd或c=2πr
5、利用公式计算(出示例1)
例1、一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)(学生根据公式自己解决)
3.14×0.95=2.983≈2.98(米) 答:
三、练习
教学内容:人民教育出版社六年制小学数学课本第十一册第89——90页例1及做一做,练习二十三1——6题。
一、素质教育目标
(一)知识教学点
1、认识圆的周长,知道圆周率的意义。
2、理解和掌握圆周长的计算公式。
(二)能力训练点
1、会用公式正确计算圆的周长。
2、通过引导学生探究圆周长的意义,培养学生抽象概括能力。
(三)德育渗透点
1、通过对圆的周长测量方法的探究,渗透化归思想。
2、通过介绍祖冲之在圆周率方面的研究成就,进行爱国主义教育。
(四)美育渗透点
通过演示,使学生受到美源于生活,美来自生产和时代的进步,感悟数学知识的魅力。
二、学法引导
1、引导学生操作、实验,从中发现规律。
2、运用周长公式,指导学生计算。
三、教学重点:圆周长的计算方法
四、教学难点 :圆周率意义的理解。
五、教具、学具准备:微机、实物投影、小黑板、系有螺丝帽的线、大小不等的圆片、铁圈、皮尺、直尺、线绳。
六、 教学过程 :
(一)认识圆的周长
1、创设情境
(屏幕显示)两只小蚂蚁在地上跑步,红蚂蚁沿着正方形路线跑,黑蚂蚁沿着圆形路线跑。
2、迁移类推
(1)要求红蚂蚁所跑的路程,实际上就是求正方形的什么?什么叫正方形的周长?怎样计算正方形的周长?(板书:围成)
(2)求黑蚂蚁所跑的路程,实际上就是求圆的什么?(板书并揭示课题:圆的周长),围成圆的这条线是一条什么线?(板书:曲线)这条曲线的长就是什么的长?什么叫圆的周长?(生回答,师完成板书:围成圆的曲线的长叫做圆的周长)。
3、实际感知
(1)师拿出一个用铁丝围成的圆,让学生用手摸出圆周长的那部分。
(2)让全班学生动手摸摸硬币、硬纸板、圆柱的周围,同桌之间边说边指出周长是指哪一部分的长。
(二)测量圆的周长
圆的周长是一条封闭的曲线,你能用手边的测量工具,测出圆的周长吗?你能想出几种测量方法?(学生自己动手测量硬币、圆铁圈、硬纸板等)。
学生说出测量方法:化曲为直、滚动、软皮尺测、绳绕圆一周。生边说,师边微机演示。
师:你们想的这些方法都很好,但是不是对所有的圆都能用这些方法测量出它的周长呢?请同学们看:(师捏住一头系着螺丝帽的线,用力甩出一个圆)象这个圆你能用绕线法或滚动法量出圆的周长吗?当然不能,因为只要老师的手一停,圆就消失了,那么我们能不能找出一条求圆周长的普遍规律呢?
(三)引导发现圆的周长与直径的关系:
1、圆的周长与什么有关系?
启发思考:正方形的周长与它的边长有什么关系?(周长是边长的4倍)那么圆的周长是否也与圆内的某条线段长有关,也存在着一定的倍数关系呢?
学生小组讨论后汇报结果。
微机演示:用三条不同长度的线段为直径,分别画出三个大小不同的圆,并把这三个圆同时滚动一周,得到三条线段的长分别就是三个圆的周长。
引导学生观察,生说出观察结果,从而得出:圆的周长与直径有关系。
2、圆的周长与直径有什么关系?
(1)测量计算
小组合作,分别量出几个圆形物体的周长和直径,并计算出周长和直径的比值,结果保留两位小数,并把相应的数据填在89页的表格中。
请同学汇报所填数据。
观察这些数据,能发现什么呢?
生概括出:每个圆的周长是它直径的3倍多一些。
(2)媒体演示:
屏幕上大小不同的三个圆及三个圆的周长(化曲为直的线段),用每个圆的直径分别去度量它的周长,得出:大小不同的三个圆,每个圆的周长还是它直径的3倍多一些。
(3)引导概括
其实,任何一个圆的周长都是它的直径的3倍多一些。这就是圆的周长与直径的关系。
3、介绍圆周率和祖冲之在圆周率研究方面所作出的贡献。
表示这个3倍多一些的数是一个固定不变的数,我们把圆的周长与直径的比值,叫做圆周率。(板书:圆的周长和直径的比值,叫做圆周率。)用字母π表示。
教学生读写π,介绍π在计算时如何取值。
学生自己读书中介绍祖冲之的一段知识。
(四)归纳圆的周长的计算公式。
学生讨论:(1)求圆的周长必须知道哪些条件?
(2)如果用C表示圆的周长,求圆周长的字母公式有几个?各是什么?
生回答,教师板书:C=πd或C=2πr
(五)应用圆周长计算公式,解决简单的实际问题。
小黑板出示例1:一张圆桌面的直径是0.95米,这张圆桌面的周长是多少米?(得数保留两位小数)
指名读题,自己列式解答(1生板演)
(六)订正时教师强调说明:
(1)解答时不必写出公式。
(2)π取两位小数,计算时就不再看成近似的数了。
(3)计算中取近似值的那一步要用“≈”表示。
完成例1下的做一做,实物投影订正。
(七)看书质疑,全课小结。
(八)课堂练习
1、判断正误,并说明理由。
(1)圆的周长是直径的3.14倍。()
(2)大圆的圆周率比小圆的圆周率大。 ()
(3)π=3.14 ()
2、求下面各图的周长(只列式不计算)
3、求下面各圆的周长
(1)d=2米(2)d=1.5厘米(3)d=4分米
r=6分米 r=3米 r=1.5厘米
分三组进行解答,订正时强调单位名称。
4、解答简单应用题
(1)一个圆形花池,直径是4.2米,周长是多少?
(2)一个圆形牛栏的半径是12米,要用多长的粗铁丝才能把牛栏围上3圈?(接头处忽略不计)
(3)一种压路机的前轮直径是1.32米,前轮的周长是多少米?如果前轮每分转6周,它每分钟前进多少米?(得数保留整米数)。
(九)课后练习
量一量家中自行车轮胎的外直径,计算它滚动一周前进多少米?
附:板书设计 :
圆 的 周 长
围成圆的曲线的长,叫做圆的周长。 例1
圆的周长和直径的比值,叫做圆周率。3.14×0.95
π≈3.14=2.983
c=πd或c=2πr≈2.98(米)
答:这张圆桌面的周
长是2.98米。
教学内容:小学数学教材十一册 “圆的周长”
教学目标 :
1. 使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;
2. 培养学生的观察、比较、分析、综合及动手操作能力;
3. 领会事物之间是联系和发展的辨证唯物主义观念。
4. 结合圆周率的学习,对学生进行爱国主义教育。
教学重点:推导并总结出圆周长的计算公式。
教学难点 :深入理解圆周率的意义。
教学准备:电脑课件,一元硬币、茶叶筒、易拉罐、圆形纸片等实物,
以及直尺、 绸带,测量结果记录表,计算器,投影资料等
教学过程 :
一、创设情境,引起猜想:
(一)激发兴趣
播放课件:小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小 灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?
(二)认识圆的周长
1.回忆正方形周长:
小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?
2.认识圆的周长:
那小灰狗所跑的路程呢?圆的周长又指的是什么意思?
每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。
[作用]播放的课件既创设了生动的教学情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。把两只小狗进行赛跑比赛的生活问题转化为比较圆的周长和正方形周长的数学问题,可谓一举多得;而且,动画的演示过程,很好的展示了圆周长的概念,并通过结合实物动手指和利用正方形周长概念进行迁移,使学生较为牢固地掌握了圆周长的概念,为后继学习奠定了基础
(三)讨论正方形周长与其边长的关系
1.我们要想对这两个路程的长度进行比较,实际上需要知道什么?
2. 怎样才能知道这个正方形的周长?说说你是怎么想的?
3. 那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?
[作用]正方形周长的复习,进一步强化了正方形周长与其边长的关系,为学生发挥自身主动性研究圆周长作好了学习方法上的准备。
(四)讨论圆周长的测量方法
1.讨论方法: 刚才我们已经解决了正方形周长的问题,而圆的周长呢?
如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?
2.反馈:(基本情况)
(1)“滚动”——把实物圆沿直尺滚动一周;
(2)“缠绕”——用绸带缠绕实物圆一周并打开;
(3)“折叠”——把圆形纸片对折几次,再进行测量和计算;
(4)初步明确运用各种方法进行测量时应该注意的问题。
3.小结各种测量方法:(板书) 转化
曲 直
4.创设冲突,体会测量的局限性
刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?
5.明确课题:
今天这堂课我们就一起来研究圆周长的计算方法。 (板书课题)
[作用]教师引导学生结合具体实物想到采用不同的方法进行测量,,由不能用直尺直接测量到用“滚动法”、“缠绕法”,以及用“折叠”的方法测量圆形纸片,最后到大屏幕上的圆不能进行实际测量,既留给学生自主发挥的空间又不断设置认知冲突,在遵循学生的认知规律的前提下,有效地培养了学生思维的创造性。
(五)合理猜想,强化主体:
1.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并反扩
2.正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?
向大家说一说你是怎么想的。
3.正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)
4.小结并继续设疑:
通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?
[作用]在学生已有的知识经验基础上,教师充分引导学生进行合理的猜想和讨论,改变了以往教学中学生依赖教师指导进行操作的被动局面,学生对后续的实际探究过程有了明确的目的性,从而充分体现了学生在课堂学习过程中的主体地位。
二、实际动手,发现规律:
(一)分组合作测算
1.明确要求:
圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。
提一个小小的建议,为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。
测量对象 圆的周长(厘米) 圆的直径(厘米) 周长与直径的关系
1
2
3
4
2.生利用学具动手操作,师巡视指导、收集信息。
3.集体反馈数据(选取3~4组实验结果,大屏幕展示)
(二)发现规律,初步认识圆周率
1.看了几组同学的测算结果,你有什么发现?
2.虽然倍数不大一样,但周长大多是直径的几倍?
3.刚才同学们已经对大小不同的圆进行了比较准确的测算,如果我们任选一个圆再进行测算,结果还会怎样?(课件进行验证)
板书:圆的周长总是直径的三倍多一些。
(三)介绍祖冲之,认识圆周率
1.这个倍数通常被人们叫做圆周率,用希腊字母π表示。
2.早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他叫什么吗?
3.这个倍数究竟是多少呢?我们来看一段资料。
(投影出示:祖冲之是我国南北朝时期,河北省涞源县人。祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,精确到小数点后第七位。不但在当时是最精密的圆周率,而且保持世界记录九百多年……)
[作用]:通过这段资料的展示,让学生我们的祖国、我们的人民的可爱,从而激发学生从内心深处对我们祖国的深深的热爱之情。
4.理解误差
看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?
5.解答开始的问题
现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗?
(四)总结圆周长的计算公式
1. 如果知道圆的直径,你能计算圆的周长吗?
板书:圆的周长 =直径× 圆周率
c =πd
2. 如果知道圆的半径,又该怎样计算圆的周长呢?
板书:c =2πr
追问:那也就是说,圆的周长总是半径的多少倍?
[作用]本环节选取一元硬币、茶叶筒、易拉罐等学生身边常见的物品,融小组合作、实验操作以及观察、归纳和概括为一体,引导学生的多种感官参与学习过程;在理解圆周率意义的过程中,循序渐进,利用课件进行验证,渗透了由特殊到一般的分析方法,还出示了较为详尽的资料,从而在深入理解新知的前提下,对学生进行了生动的爱国主义教育。而且,利用圆周率的意义准确解答开始的问题,前后呼应,使结构更加严谨,计算公式的总结水到渠成。
三、引导质疑,深入领会 (略)
四、巩固练习,形成能力
1.判断并说明理由:π =3.14 ( )
2.选择正确的答案:
大圆的直径是1米,小圆的直径是1厘米。那么,下列说法正确是:()
a.大圆的圆周率大于小圆的圆周率;
b.大圆的圆周率小于小圆的圆周率;
c.大圆的圆周率等于小圆的圆周率。
3.实际问题:老师家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?
五、课内小结,扎实掌握
通过今天的学习,你有什么收获?
[评析]练习设计目的明确,层次清楚,有效的对新知加以巩固;判断题和选择题很好的抓住新授内容的重、难点,有利于学生对新知准确而清晰的把握;实际问题紧密联系学生的生活经验,体现了“学数学,用数学”的教学观念。通过引导学生从知识和能力两方面谈收获,不仅明确的再现了教学的重点内容,而且再次体现了学生的主体性。
六、课外引申,拓展思维
如果小黄狗沿着大圆跑,小灰狗沿着两个小圆
绕8字跑,谁跑的路程近?
教材分析
(可以从以下几个方面进行阐述,不必面面俱到)
课标中对本节内容的要求;本节内容的知识体系;本节内容在教材中的地位,前后教材内容的逻辑关系。
本节核心内容的功能和价值(为什么学本节内容),不仅要思考其他内容对本节内容学习的帮助,本节内容的学习对学科体系的建立、其他学科内容学习的帮助;还应该思考通过本节内容的学习,对学生学科能力甚至综合素质的帮助,以及思维方式的变化影响等。
教材从生活情境入手,通过让学生思考自行车绕圆形花坛骑一圈大约有多少米,引出圆的周长的概念。接着让学生思考:如何求一个圆的周长,引导学生用不同的方法进行测量。在此基础上,让学生通过测量几组圆的直径和周长,自主发现周长和直径的比值是一个固定值,从而引出圆周率的概念,并总结出圆的周长计算公式。
在本节内容中,教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程理解并掌握圆的周长计算方法。
在本教学设计中,对教材内容呈现形式上做了略微的改动。本设计从周长引入本课教学,这样可以加深圆的周长和其他以学图形周长在计算的联系和区别。用直的线围成的图形的周长求周长是几条直的线段长之和,而圆这个曲线围成的图形的计算方法是化曲为直。
学情分析
(可以从以下几个方面进行阐述,但不需要格式化,不必面面俱到)
教师主观分析、师生访谈、学生作业或试题分析反馈、问卷调查等是比较有效的学习者分析的测量手段。
学生认知发展分析:主要分析学生现在的认知基础(包括知识基础和能力基础),要形成本节内容应该要走的认知发展线,即从学生现有的认知基础,经过哪几个环节,最终形成本节课要达到的知识。
学生认知障碍点:学生形成本节课知识时最主要的障碍点,可能是知识基础不足、旧的概念或者能力方法不够、思维方式变化等。
在三年级上册学习了周长的一般概念以及长方形、正方形周长计算的基础上进一步学习圆的周长计算。
教学目标
(教学目标的确定应注意按照新课程的三维目标体系进行分析)
1、让学生知道圆的周长和圆周率的含义,掌握圆周率的近似值。理解掌握圆周长的计算公式,并能应用公式解决简单的实际问题。
2、通过对圆周长的测量和计算公式的探讨,培养学生观察、分析、比较、综合和主动研究、探索解决问题的方法的能力。
3、通过探索对学生进行辩证唯物主义的教育,结合我国古代数学家祖冲之的故事,对学生进行爱国主义教育。
教学重点和难点
教学重点:正确计算圆的周长
教学难点:理解圆周率的意义,推倒圆周长的计算公式。
教学流程示意
(按课时设计教学流程,教学流程应能清晰准确的表述本节课的教学环节,以及教学环节的核心活动内容。因此既要避免只有简单的环节,而没有环节实施的具体内容;还要避免把环节细化,一般来说,一节课的主要环节最好控制在4~6个之间,这样比较有利于教学环节的实施。)
一、创设情境,认识周长
二、小组合作,探究求圆周长的方法
三、运用知识,解决问题
四、课堂总结
五、布置作业
六、教学反思
教学过程(教学过程的表述不必详细到将教师、学生的所有对话、活动逐字记录,但是应该把主要环节的实施过程很清楚地再现。)
教学目标:
1.生经历探索已知一个圆的周长 求这个圆的直径或半径的过程,体会解题策略的多样性。
2.生进一步理解周长、直径、半径之间的关系,能熟练运用圆的周长公式解决一些实际问题。
3.学生感受平面图形的学习价值,进一步提高学习数学的兴趣和学习数学的信心。
教学重点:
探索已知圆的周长,求这个圆的直径或半径的方法。
教学难点:
能熟练运用圆的周长公式解决实际问题。
课前准备:
多媒体课件
教学设计:
一、教学例6。
⑴ 课件出示例6的场景图,全班交流:怎样能准确测算出这个花坛的直径,又不会损伤到花坛里的花草呢?(先测量出花坛的周长,再算出花坛的直径。)
⑵ 课件出示测量的结果:花坛的周长是251.2米。
小组交流:知道了这个花坛的周长,怎样算出这个花坛的直径呢?
① 在小组中说说自己的想法。
② 展示自己是怎么解答的。
⑶ 全班展示、交流。
① 根据圆周长公式C=πd列方程解答。
解:设这个花坛的直径是x米。
3.14x=251.2
x=251.2÷3.14
x=80
② 直接用除法计算。
251.2÷3.14=80(米)
⑷ 总结比较:这两种方法有什么相同和不同的地方?你喜欢什么方法?为什么?
小结:这两种方法都是根据圆周长的计算公式,列方程是顺着题意思考,用除法计算是直接利用周长公式中各部分之间
的关系计算。
2.习“试一试”。
二、巩固拓展
1.成“练一练”。
提醒学生估算时,可将圆周率看作3,并使学生意识到3比圆周率实际值小了一些,所以周长也应该适当估小一点。
2.成练习十四第5题。
3.成练习十四第6题
4.成练习十四第7题。
5.生完成练习十四第8题。
6.成练习十四第9、10题。
三、总结延伸
本节课,你有哪些收获?还有什么疑问?
教学目标:
1.经历圆周率的探索过程,理解并掌握圆周率的意义和近似值,初步理解并掌握圆的周长计算公式,能正确计算圆的周长。
2.培养学生的观察、比较、分析和动手操作的能力,发展学生的空间观念,培养学生抽象概括的能力和解决简单的实际问题的能力。
3.通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。
教学重点:
理解并掌握圆的周长的计算公式。
教学难点:
理解圆的周长与直径之间的关系。
教学准备:
圆规、剪刀、绳子、尺子。
教学过程:
一、复习旧知,引入新知
1.教师在黑板上画圆。
(1)提问:你对圆有哪些了解?
(2)指名回答,同学之间相互补充。
(3)你还想了解什么?
2.通过学生的回答,引出:这节课我们就起来研究圆的周长。(板书:圆的周长)
二、合作交流,探究新知
1.认识周长的含义。
(1)师:你能指出黑板上这个圆的周长吗?
(2)从实物中指出圆的周长。
(3)用语言表述圆的周长。
学生回答,教师总结:圆的周长就是指围成圆的曲线的长度。
2.教学例4。
(1)出示例4,了解轮胎规格。明确:这里的22英寸、24英寸、26英寸是指
轮胎的直径。
(2)启发思考:如果把它们各滚动一圈,哪种车轮行驶的路程比较长?
(3)比较这三个车轮的直径和周长,你又有什么发现?
(4)小结:直径越大,圆就越大,圆的周长也就越长。圆的周长和直径到底有什么关系呢?接下来我们继续研究。
3.教学例5。
(1)讨论实验方案。要研究直径和周长间有什么关系,我们可以怎样做?
(2)学生回答后,小结:我们可以画几个圆,量一量它们的直径和周长,算一算周长除以直径的商。
(3)明确要求
①画三个大小不同的圆。
②用尺子量出直径。
③用线围出圆的周长并用尺子挞出长度。
④边操作边填好表格。
周长/cm 直径/cm 周长除以直径的商
(保留两位小数)
(4)学生分组按要求操作,要求分工明确。
(5)整理学生的测量结果,汇总。
(6)观察表格,说说有什么发现。
学生回答后,小结:一个圆的周长总是直径的3倍多一些。
4.认识圆周率。
(1)介绍圆周率,并板书: 3.14
(2)阅读教材第102页的你知道吗内容。
5.推导得出圆的周长计算公式及其字母公式。
板书: 或
三、巩固练习,加深理解
1.完成试一试。
(l)根据刚刚学过的圆的周长的计算方法,学生独立计算车轮的周长。
(2)指名说说计算方法。
2.完成练一练。
(l)学生独立完成计算。
(2)汇报交流。
3.完成练习十四第1题。
(1)学生看图,说说题目中的已知条件。
(2)学生独立完成计算。
(3)交流计算方法。
4.作业:练习十四第2、3、4题。
四、课堂小结
师:这节课我们研究了圆的周长,谁能说说是用什么方法进行研究的?你有
哪些收获?
板书设计:
圆的周长
周长/cm 直径/cm 周长除以直径的商
(保留两位小数)
一、教学目标
【知识与技能】
掌握圆的周长计算公式,知道周长与直径的关系,并能够利用圆的周长公式解决实际问题。
【过程与方法】
通过探究圆的周长公式的过程,培养学生观察、比较的能力,提高逻辑推理能力。
【情感态度与价值观】
积极参与数学活动,培养学习数学的兴趣。
二、教学重难点
【重点】圆的周长的计算公式。
【难点】圆的周长公式的推导过程。
三、教学过程
(一)导入新课
创设情境:多媒体展示大头儿子家的圆桌开裂,爸爸想用铁皮将圆桌固定起来的情境,请同学帮忙计算需要多长的铁皮。
学生根据问题情境不难想到计算需要的铁皮实际是计算圆一圈的长度。
教师明确,圆一圈的长度即为圆的周长。
引入课题——圆的周长。
(二)探索新知
1、探索发现
学生活动:同桌之间利用手中的圆形教具,测量圆形教具的周长。
学生汇报测量结果及测量方法。
教师引导学生思考,圆的周长大小与什么有关。
学生根据圆的特征,不难发现圆的周长与圆的大小有关,圆的大小与圆的半径、直径有关。
教师明确直径是半径的2倍,可看其中一项即可。
2、探索圆的周长与圆的直径关系
小组活动:以小组为单位,8分钟时间,利用手中不同大小的圆形教具,测量其周长及直径,并做好数据记录。观察测量结果,计算数据间的特殊关系。教师巡视,对有困难的小组及时给予指导。
小组汇报分享测量结果,教师板书。
学生分享计算结果,其中和、差、积无规律,商值在3.1左右。教师鼓励学生再多测量几组数据,并计算圆的周长与直径的比值。
学生汇报通过多次测量计算比值总在3.1左右。
教师讲解:实际圆的周长与圆的直径的比值是一个固定的数,命名为圆周率。用字母π表示,并向学生展示其写法和读法。
给出圆周率的特点:
(1)是一个无限不循环的小数;
(2)我国伟大的数学家祖冲之将其精确到小数点后七位;
(3)现在为了方便只要取小数点后两位即可。
(三)应用新知
问题:大头儿子家圆桌直径为1米,求需要买多长的'铁丝?3.1米够吗?
教师强调:根据公式需要3.14米,不可四舍五入到3.1米,通过进一法,要买3.2米的铁丝。
(四)小结作业
提问:通过本节课,你有什么收获?
课后作业:回家找一个圆形,借助直尺测量,计算出周长。
四、板书设计
略