机械原理教案设计【精选11篇】

在平日里,心中难免会有一些新的想法,可以通过写心得体会的方式将其记录下来,这样有利于我们不断提升自我。到底应如何写心得体会呢?奇文共欣赏,疑义相如析,本文是细心的小编飞白给大家整编的11篇机械原理课程设计的相关文章,仅供借鉴,希望大家能够喜欢。

机械原理课程设计 篇1

机械原理 课程设计说明书

设计题目:牛头刨床的设计

机构位置编号:11 3

方案号:II

班 级: 姓 名: 学 号:

年 月 日

目录

一、前言………………………………………………1

二、概述

§2.1课程设计任务书…………………………2 §2.2原始数据及设计要求……………………2

三、设计说明书

§3.1画机构的运动简图……………………3 §3.2导杆机构的运动分析…………………4 §3.3导杆机构的动态静力分析3号点……11 §3.4刨头的运动简图………………………15

§3.5飞轮设计………………………………17

§3.6凸轮机构设计…………………………19 §3.7齿轮机构设计…………………………24

四、课程设计心得体会……………………………26

五、参考文献………………………………………27

一〃前言

机械原理课程设计是高等工业学校机械类专业学生第一次较全面的机械运动学和动力学分析与设计的训练,是本课程的一个重要实践环节。是培养学生机械运动方案设计、创新设计以及应用计算机对工程实际中各种机构进行分析和设计能力的一门课程。其基本目的在于: 

⑴.进一步加深学生所学的理论知识培养学生独立解决有关本课程实际问题的能力。

⑵.使学生对于机械运动学和动力学的分析设计有一较完整的概念。

⑶.使学生得到拟定运动方案的训练并具有初步设计选型与组合以及确定传动方案的能力。

⑷.通过课程设计,进一步提高学生运算、绘图、表达、运用计算机和查阅技术资料的能力。

⑸.培养学生综合运用所学知识,理论联系实际,独立思考与分析问题能力和创新能力。

机械原理课程设计的任务是对机械的主体机构连杆机构、飞轮机构凸轮机构,进行设计和运动分析、动态静力分析,并根据给定机器的工作要求,在此基础上设计凸轮,或对各机构进行

运动分析。

二、概述

§2.1课程设计任务书

工作原理及工艺动作过程 牛头刨床是一种用于平面切削加工的机床,如图(a)所示,由导杆机构1-2-3-4-5带动刨头5和削刀6作往复切削运动。工作行程时,刨刀速度要平稳,空回行程时,刨刀要快速退回,即要有极回作用。切削阶段刨刀应近似匀速运动,以提高刨刀的使用寿命和工件的表面 加工质量。切削如图所示。

§2.2.原始数据及设计要求

三、设计说明书(详情见A1图纸)

§3.1、画机构的运动简图

以O 4为原点定出坐标系,根据尺寸分别定出O 2点B点,C点。确定机构运动时的左右极限位置。曲柄位置图的作法为,取1和8’为工作行程起点和终点所对应的曲柄位置,1’和7’为切削起点和终点所对应的曲柄位置,其余2、3„12等,是由位置1起,顺ω2方向将曲柄圆作12等分的位置,如下图:

§3.2 导杆机构的运动分析

11位置的速度与加速度分析 1)速度分析

取曲柄位置“11”进行速度分析。因构件2和3在A处的转动副相连,故VA2=VA3,其大小等于W2lO2A,方向垂直于O2 A线,指向与ω2一致。

曲柄的角速度 ω2=2πn2/60 rad/s=6.702rad/s υA3=υA2=ω2〃lO2A=6.702×0.09m/s=0.603m/s(⊥O2A)

取构件3和4的重合点A进行速度分析。列速度矢量方程,得

υA4= υA3+ υA4A3 大小 ?

√ ? 方向 ⊥O4B ⊥O2A ∥O4B 取速度极点P,速度比例尺µv=0.01(m/s)/mm,作速度多边形如下图

由图得

υA4=0.567m/s

υA4A3 =0.208m/s

用速度影响法求得

VB5=VB4=VA4*04B/O4A=1.244m/s 又

ω4=VA4/O4A=2.145rad/s 取5构件为研究对象,列速度矢量方程,得

vC = vB+ vCB 大小

? √ ? 方向 ∥XX ⊥O4B ⊥BC 取速度极点P,速度比例尺μv=0.01(m/s)/mm, 作速度多边行如

上图。则图知,vC5= 1.245m/s

Vc5b5=0.111m/s

ω5=0.6350rad/s

2)加速度分析

取曲柄位置“11”进行加速度分析。因构件2和3在A点处的转动副相连,故aA2n=aA3n,其大小等于ω22lO2A,方向由A指向O2。ω2=6.702rad/s, aA3n=aA2n=ω22lO2A=6.702×0.09 m/s2=4.0425m/s2 取3、4构件重合点A为研究对象,列加速度矢量方程得:

aA4 = aA4n + aA4τ

= aA2n

+ aA4A2k

+

aA4A

2大小:

?

ω42lO4A

?

2ω4υA4 A2

?

方向: ? A→O4 ⊥O4B A→O2

⊥O4B

∥O4B 取加速度极点为P',加速度比例尺µa=0.1(m/s2)/mm, 作加速度多边形如下图所示。由图可知

aA4=2.593m/s2 用加速度影响法求得

aB4= aB5 = aA4* L04B / L04A =5.690 m /s2 又

ac5B5n =0.0701m/s2 取5构件为研究对象,列加速度矢量方程,得

ac5= aB5+ ac5B5n+ a c5B5τ 大小

?

w52 Lbc

? 方向

∥XX √

c→b

⊥BC 作加速度多边形如上图,则

aC5B5τ= C5´C5·μa =2.176m/s2

aC5 =4.922m/s2

3号位置的速度与加速度分析 1)速度分析

取曲柄位置“3”进行速度分析,因构件2和3在A处的转动副相连,故VA3=VA2,其大小等于w2〃lO2A,方向垂直于O2 A线,指向与w2一致。

曲柄的角速度 ω2=2πn2/60 rad/s=6.702rad/s υA3=υA2=ω2〃lO2A=6.702×0.09m/s=0.603m/s(⊥O2A)取构件3和4的重合点A进行速度分析,列速度矢量方程,得,VA4

=VA3

+ VA4A3

大小

?

?

方向

⊥O4B

⊥O2A

∥O4B 取速度极点P,速度比例尺µv=0.01(m/s)/mm,作速度多边形如下图

VA4=pa4〃µv= 0.487m/s VA4A3=a3a4〃µv= 0.356 m/s w4=VA4⁄lO4A=1.163rad/s VB=w4×lO4B= 0.675m/s

取5构件作为研究对象,列速度矢量方程,得

υC =

υB

+

υCB

大小

?

? 方向 ∥XX(向右)

⊥O4B

⊥BC

取速度极点P,速度比例尺μv=0.01(m/s)/mm, 作速度多边形如上,则

Vc5=0.669m/s

Vcb=0.102m/s

W5=0.589rad/s 2).加速度分析

取曲柄位置“3”进行加速度分析。因构件2和3在A点处的转动副相连,故aA2n=aA3n,其大小等于ω22lO2A,方向由A指向O2。ω2=6.702rad/s, 9 aA2n=aA3n=ω22lO2A=6.702×0.09 m/s2=4.0426m/s2 取3、4构件重合点A为研究对象,列加速度矢量方程得:

aA4 =aA4n+ aA4τ = aA3n + aA4A3K + aA4A3v 大小: ? ω42lO4A ? √ 2ω4υA4 A3 ? 方向 ? B→A ⊥O4B A→O2 ⊥O4B ∥O4B(沿导路)取加速度极点为P',加速度比例尺µa=0.1(m/s2)/mm, 作加速度多边形下图所示:

则由图知:

aA4 =P´a4´〃μa =3.263m/s2 aB4= aB5 = aA4* L04B / L04A =4.052 m/ s2 取5构件为研究对象,列加速度矢量方程,得

ac = aB + acBn+ a cBτ

大小 ? √ ω5l2CB ? 方向 ∥X轴 √ C→B ⊥BC 其加速度多边形如上图,则 ac =p ´c〃μa =4.58m/s2 §3.3 导杆机构的动态静力分析 3号点 取3号位置为研究对象:

①.5-6杆组共受五个力,分别为P、G6、Fi6、R16、R45, 其中R45和R16 方向已知,大小未知,切削力P沿X轴方向,指向刀架,重力G6和支座反力R16 均垂直于质心,R45沿杆方向由C指向B,惯性力Fi6大小可由运动分析求得,方向水平向左。选取比例尺μ=(40N)/mm,受力分析和力的多边形如图所示:

已知:

已知P=9000N,G6=800N,又ac=ac5=4.58m/s2 那么我们可以计算 FI6=-G6/g×ac =-800/10×4.5795229205 =-366.361N 又ΣF=P + G6 + FI6 + F45 + FRI6=0,方向 //x轴 → ← B→C ↑ 大小 9000 800 √ ? ? 又

ΣF=P + G6 + Fi6 + R45 + R16=0,方向

//x轴

B→C

↑ 大小

8000

620

? 由力多边形可得:F45=8634.495N

N=950.052 N 在上图中,对c点取距,有

ΣMC=-P〃yP-G6XS6+ FR16〃x-FI6〃yS6=0 代入数据得x=1.11907557m ②.以3-4杆组为研究对象(μ=50N/mm)

已知: F54=-F45=8634.495N,G4=220N aB4=aA4〃 lO4S4/lO4A=2.261m/s2 , αS4=α4=7.797ad/s2

可得:

FI4=-G4/g×aS4 =-220/10×2.2610419N=-49.7429218N MS4=-JS4〃aS4=-9.356 对O4点取矩:

MO4= Ms4 + Fi4×X4 + F23×X23-R54×X54-G4×X4 = 0 代入数据,得:

MO4=-9.356-49.742×0.29+F23×0.4185+8634.495×0.574+220×0.0440=0 故:

F23=11810.773N Fx + Fy + G4 + FI4 + F23 + F54 = 0 方向: ? ? √ M4o4 √ √ 大小: √ √ → √ ┴O4B √

解得:

Fx=2991.612N Fy=1414.405N 方向竖直向下

③.对曲柄分析,共受2个力,分别为F32,F12和一个力偶M,由于滑块3为二力杆,所以F32=F34,方向相反,因为曲柄2只受两个力和一个力偶,所以F12与F32等大反力。受力如图:

h2=72.65303694mm,则,对曲柄列平行方程有,ΣMO2=M-F32〃h2=0 即

M=0.0726*11810.773=0,即M=858.088N〃M

§3.4刨头的运动简图

§3.5飞轮设计

1.环取取曲柄AB为等效构件,根据机构位置和切削阻力Fr确定一个运动循的等效阻力矩根据个位置时

值,采用数值积分中的梯形法,计算曲柄处于各的功

。因为驱动力矩可视为

,确定等效驱动力常数,所以按照

矩Md。

2.估算飞轮转动惯量 由

确定等效力矩。

§3.6凸轮机构设计

1.已知:摆杆为等加速等减速运动规律,其推程运动角o=10o,回程运动角0'=70o,摆杆长度=70远休止角001lo9D=135mm,最大摆角max=15o,许用压力角[]=38.2.要求:(1)计算从动件位移、速度、加速度并绘制线图。(2)确定凸轮机构的基本尺寸,选取滚子半径,划出凸轮实际轮廓线,并按比例绘出机构运动简图。

3.设计步骤:

1、取任意一点O2为圆心,以作r0=45mm基圆;

2、再以O2为圆心,以lO2O9/μl=150mm为半径作转轴圆;

3、在转轴圆上O2右下方任取一点O9;

4、以O9为圆心,以lOqD/μl=135mm为半径画弧与基圆交于D点。O9D即为摆动从动件推程起始位置,再以逆时针方向旋转并在转轴圆上分别画出推程、远休、回程、近休,这四个阶段。再以11.6°对推程段等分、11.6°对回程段等分(对应的角位移如下表所示),并用A进行标记,于是得到了转轴圆山的一系列的点,这些点即为摆杆再反转过程中依次占据的点,然后以各个位置为起始位置,把摆杆的相应位置

画出来,这样就得到了凸轮理论廓线上的一系列点的位置,再用光滑曲

线把各个点连接起来即可得到凸轮的外轮廓。

5、凸轮曲线上最小曲率半径的确定及滚子半径的选择

(1)用图解法确定凸轮理论廓线上的最小曲率半径min:先用目测法估计凸轮理论廓线上的min的大致位置(可记为A点);以A点位圆心,任选较小的半径r 作圆交于廓线上的B、C点;分别以B、C为圆心,以同样的半径r画圆,三个小圆分别交于D、E、F、G四个点处,如下图9所示;过D、E两点作直线,再过F、G两点作直线,两直线交于O点,则O点近似为凸轮廓线上A点的曲率中心,曲率半径minOA;此次设计中,凸轮理论廓线的最小曲率半径min 26.7651mm。

凸轮最小曲率半径确定图(2)凸轮滚子半径的选择(rT)

凸轮滚子半径的确定可从两个方向考虑: 几何因素——应保证凸轮在各个点车的实际轮廓曲率半径不小于1~5mm。对于凸轮的凸曲线处CrT,对于凸轮的凹轮廓线CrT(这种情况可以不用考虑,因为它不会发生

失真现象);这次设计的轮廓曲线上,最

小的理论曲率半径所在之处恰为凸轮

上的凸曲线,则应用公式:minrT5rTmin521.7651mm;滚

子的尺寸还受到其强度、结构的限制,不能做的太小,通常取rT(0.10.5)r0

及4.5rT22.5mm。综合这两方面的考虑,选择滚子半径可取rT=15mm。

然后,再选取滚子半径rT,画出凸轮的实际廓线。设计过程 1.凸轮运动规律 推程0≤2φ≤δo /2时:

2max12204max120,0024max2 120

推程δo /2≤φ≤δo时:

2max1max(220)04max1(20)002,04max2120

回程δo+δs01≤φ≤δo+δs+δ'o/2时:

2max1max2'204max1'200,0'24max21'20

回程δo+δs+δ’o/2≤φ≤δo+δs+δ’o时:2max1(0')2'204max1('20')00'2,0'4max21'20

2.依据上述运动方程绘制角位移ψ、角速度ω、及角加速度β的曲线,由公式得出如下数据关系(1)角位移曲线:

(2)角速度ω曲线:

(3)角加速度曲线:

4)、求基圆半径ro及lO9O2

3.由所得数据画出从动杆运动线图

§3.7齿轮机构设计 1、设计要求:

计算该对齿轮传动的各部分尺寸,以2号图纸绘制齿轮传动的啮合图,整理说明书。

2.齿轮副Z1-Z2的变位系数的确定

齿轮2的齿数Z2确定:

io''2=40*Z2/16*13=n0''/no2=7.5

得Z2=39

取x1=-x2=0.5

x1min=17-13/17=0.236 x2min=17-39/17=-1.29

计算两齿轮的几何尺寸:

小齿轮

d1=m*Z1=6*13=78mm

ha1=(ha*+x1)*m=(1+0.5)*6=9mm

hf1=(ha*+c*-x1)*m=(1+0.25-0.5)*6=4.5mm

da1=d1+2*ha1=78+2*9=96

df1=d1-2*h f1=78-9=69

db1=d1*cosɑ=78*cos20˚=73.3

四 心得体会

机械原理课程设计是机械设计制造及其自动化专业教学活动中不可或缺的一个重要环节。作为一名机械设计制造及其自动化大三的学生,我觉得有这样的实训是十分有意义的。在已经度过的生活里我们大多数接触的不是专业课或几门专业基础课。在课堂上掌握的仅仅是专业基础理论面,如何去面对现实中的各种机械设计?如何把我们所学的专业理论知识运用到实践当中呢?我想这样的实训为我们提供了良好的实践平台。

一周的机械原理课程设计就这样结束了,在这次实践的过程中学到了很多东西,既巩固了上课时所学的知识,又学到了一些课堂内学不到的东西,还领略到了别人在处理专业技能问题时显示出的优秀品质,更深切的体会到人与人之间的那种相互协调合作的机制,最重要的还是自己对一些问题的看法产生了良性的变化。

其中在创新设计时感觉到自己的思维有一条线发散出了很多线,想到很多能够达到要求的执行机构,虽然有些设计由于制造工艺要求高等因素难以用于实际,但自己很欣慰能够想到独特之处。这个过程也锻炼了自己运用所学知识对设计的简单评价的技能。

五、参考文献

1、《机械原理教程》第7版

主编:孙桓

高等教育出版社

2.《机械原理课程设计指导书》主编:戴娟

高等教育出版社

3.《理论力学》主编:尹冠生

西北工业大学出版社

机械原理课程设计 篇2

【关键词】对口高职 机械原理 课堂教学 教学改革

一、引言

《机械原理》是机械专业(对口高职)本科专业的主干课和学位课之一[1]。在机械类本科专业课程中起着从基础课过渡到专业课、从理论性课程过渡到结合工程实际的承先启后的桥梁作用[2-5]。通过该课程的学习,学生能够掌握机构学和机械动力学的基础理论、基本知识和基本技能,掌握机构结构的基本知识,常用机构的工作原理和运动特点,机构的运动学和动力学分析、机构组合基本知识,还能够了解分析与机构设计的新理论、新方法及发展趋势。

二、教学现状分析

机械设计制造及其自动化(对口高职)本科专业招生对象主要为中职院校考生。与普招本科学生相比,他们基础知识比较薄弱,其主动学习能力也相对较差。如何在有限的教学资源的前提下激发学生的学习兴趣,提高《机械原理》课程教学的质量,降低教学难度,增加学生对机构的组合及运动分析的理解能力,最终提高教学效果是摆在我们面前的一个重要的课题。

三、教学内容的改革

目前,现有的机械原理课程教材理论性偏重,缺乏实际应用知识。理论深度与机制对口高职本科专业学生的基础和能力不匹配,导致学生学习比较困难,影响学习兴趣,从而导致学习效果较差。本课程在教学过程中,以专业教学计划培养目标为依据,以岗位任务为基本出发点,以学生发展为本位,设计课程内容。充分利用课程特征,加大学生工程体验和情感体验的教学设计,激发学生的主体意识和学习兴趣。笔者结合机械原理课程的实际教学内容,对教学内容资源进行优化整合。将课程教学内容分为平面连杆机构分析与设计、凸轮机构分析与设计、齿轮机构分析与设计和轮系分析与设计四个模块。对每个模块设计学习情境。具体案例和效果如下。

在平面连杆机构急回特性的教学过程中,以牛头刨床为案例,引出急回特性的含义。让学生弄清楚急回特性的定义。由定义引出急回特性与极位夹角的关系。最后,通过定义找出行程速比系数与极位夹角之间的关系。这样大大降低了学生对急回特性的理解难度。以实际例子,使学生认识所学知识来源于生活,应用于生活,加深学生的学习印象,从而引起学生的学习兴趣。

四、教学方式的改革

机械原理课程理论较重,对前期课程理论力学的学习效果要求较高。针对对口高职的学生,由于其基础相对较差,机械原理课程处于“教师难教,学生难学”的状态。为了让学生真正掌握这一门课程的相关知识,不仅要对教学内容进行改革,还要对教学方式进行改革。传统的教学方式属于“赶鸭子上架”式的教学模式。教师不断地在课堂上进行知识点的灌输,这样往往效果较差。笔者一方面在传统教学上注重多媒体技术的运用,加大动画演示教学手段;并且在教学过程中尽量采用任务驱动式、模块化等现代教学方法。另一方面,增加学生说课环节。对教学班级学生进行小组划分,每个小组自己设计一个教学选段,进行课堂教学。每个小组课堂教学效果进行评比,结果作为期末成绩的一部分。通过这种方法,让学生由被动学习转向主动学习,增加学生对知识学习的主观能动性。

五、结束语

《机械原理》课程是机械设计制造及其自动化(对口高职)本科专业的核心课程之一。它在培养机械类高级工技术人才的过程中,具有增强学生对机械技术工作的适应性,培养其开发创新的能力,为以后学习机械设计和有关专业课程以及掌握新的科学技术打好工程技术理论基础。通过对机械原理课程教学内容和教学手段的改革,提高学生的学习兴趣,让学生从“要我学”向“我要学”的学习态度转变,从而达到满意的教学效果。

【参考文献】

[1]w京,魏珊珊。机械原理课程的教学改革实践[J].化工高等教育,2007(01):14-16.

[2]匡兵,孙永厚等。面向应用的《机械原理》教学改革实践[J].科技信息,2012(33):707-708.

[3]宋少云。面向工程的机械原理的教学改革[J].大学教育,2014(03):103-104.

机械原理课程设计范文 篇3

关键词 教学改革;机械原理;创新设计

中图分类号:G642.0 文献标识码:B

文章编号:1671-489X(2014)24-0139-02

机械原理是高等院校机械类各专业一门重要的主干技术基础课,本课程主要研究各种机构的组成原理、常用机构的特点及应用与设计、机构的运动学及机构动力学和机械系统的方案设计等问题[1],是培养学生设计能力和创新思维的重要基础。因此,在培养学生设计能力和创新思维方面,机械原理课程有着其他课程不可代替的作用[2]。本文就机械原理的教学过程中如何培养学生的创新设计思想,结合自己多年的教学经验,谈几点教学体会。

1 整合教学内容,做到突出重点

机械原理课程涉及的知识点比较多,而内容又抽象难懂。现有的机械原理教材理论知识大都比较完整,所以教材包含的内容多、涉及的知识面广。而在教学过程中应该注重理论知识的实用性,学生在课堂上所学到的知识既要能够满足学生毕业后从事技术工作的需要,还要培养学生的设计能力和创新思维。因此,必须在有限的课时内优化教学内容。

优化内容 在教学过程中将教学内容分为必修、选修和自学三类,其中机构的结构分析、平面机构的运动和力分析、三种典型机构(连杆机构、凸轮机构、齿轮机构)的设计、齿轮系及其设计以及轮系传动比的计算作为必修内容。同时,根据专业的不同,将机械系统的方案设计、机械的运转及其速度波动的调节等章节作为选修内容,将机械的平衡和其他常用机构等作为自学内容。这样可以对教材所讲述的内容做出合理的取舍。

随着科学技术的发展,解析法由于其自身的优点应用越来越广泛。所以在教学过程中应加强解析法的讲解,以适应时代的变化。但是在讲反转法设计凸轮的廓线时,图解法仍然有着不可替代的作用,因为图解法直观易懂,有助于学生对教学内容的理解和掌握。

突出重点 在选取教学内容时,要注意做到突出重点,以点带面,从而使学生对相关知识点的掌握达到举一而三反的目的。例如,在齿轮机构中,着重讲清直齿轮传动的基本概念、理论及方法,直齿轮齿廓曲线的形成、齿轮的基本参数、几何尺寸的计算、啮合传动及切制原理;当讲到斜齿轮时,着重讲清楚直齿轮和斜齿轮的区别;当介绍锥齿轮齿时,着重讲清锥齿轮和直齿轮的区别以及当量齿轮的概念,而不做具体的推导计算,使得教学内容精练,避免了教学内容的简单重复。这样既突出了本章内容的重点,而且简化了分析问题的演化思想及方法,也节省了讲授学时[3]。

突出课程的创新性 结合实例教学,加强学生对机械系统的感官认识,增强学生对机械系统传动方案的设计能力,使学生学会用系统的观点去分析问题、解决问题。如在机械系统的方案设计教学过程中,增加机构的选型等内容,使学生通过对各种机构的比较研究,根据使用要求、工作性能、经济性、机械结构的合理性等方面,综合选择合理可行的机构。同时,在平时的课堂教学过程中分章节引入往年学生在科创中遇到的问题,这样不仅能培养学生的学习兴趣,而且能激发学生的设计思维和创新能力。

2 充分利用各种教学手段,培养学生的学习兴趣

多媒体教学 机械原理教学中的有些内容,仅靠教师的课堂讲解,学生很难理解。如运动副、连杆机构、凸轮机构等,如果仅用语言叙述,学生很难明白,所以要恰当地使用图示、模型、动画等多种教学方式,加深学生对学习对象的认知。也就是说,把抽象的概念用形象、直观的图和动画展示出来,有助于学生对相关知识的理解和掌握。

在课堂教学的过程中经常会发现,哪一节课的动画比较多,学生的学习兴趣就比较浓。但是,教师在教学过程中也不能片面地追求多媒体教学。如在教授矢量方程图解法对机构进行运动分析时,宜采用多媒体和板书相结合的方法。因此,在教学过程中要充分、合理地采用多媒体教学,提高学生的学习兴趣。

传统教具与现代教学的有机结合 现在大多数教师在教学过程中使用动画来辅助教学,但这并不是对传统教具的否定。比如在介绍铰链四杆机构的基本类型时,完全采用多媒体课件,学生可能会对曲柄摇杆机构选取不同的构件作为机架,能得到不同类型机构,即对“机构倒置”这一概念难以真正理解,如果在多媒体教学的同时,加上教具实物演示,可能会收到更好的教学效果。

多结合生活、生产实例以增强教学效果 因为多结合生活、生产实例可以加深学生的印象,提高说服力。如讲四杆机构时,以缝纫机脚踏板机构为例,说明哪一部分是曲柄,哪一部分是摇杆,哪个构件是原动件,哪一部分是从动件,以及当取摇杆为原动件时曲柄摇杆机构的死点以及死点的克服方法等问题。因为很多学生都有使用缝纫机的经历,这样很容易和学生产生共鸣,提高学生的学习兴趣,增强课堂教学效果。

再如,讲述凸轮机构的应用时引入学生的科创项目――非圆形喷域面积喷头的设计,利用圆柱凸轮机构改变喷头的仰角,从而达到改变喷头的射程来控制喷域的形状。通过这一实例,不仅使学生对凸轮机构的应用有了更深的认识,更激发了学生的科创兴趣。

3 加强和改进实践教学环节

充实实验内容 传统的机械原理实验主要是演示实验及验证性实验,对学生掌握课堂知识具有一定的帮助,但这些实验教学内容相对简单,很难激发学生的学习兴趣。西北农林科技大学从2009年开始增加了机构传动系统设计、拼装及运动分析实验,该实验为学生提供了动手拼装实际传动机构的平台,学生可以设计、拼装实现不同运动要求的机构传动系统,验证课堂所讲的理论内容。每次实验通常需要4~8小时,学生不仅没有因为时间长而抱怨,而且由于对内容感兴趣、能自己动手而兴致高涨。学生通过自己动手、动脑搭建自己设计的机构,从而使其创新意识得到进一步的培养,创新设计能力得到进一步的提高,也使其更加认识到理论与实践相结合的重要性[4]。

细化课程设计 课程设计是机械原理教学的另一个重要的实践性环节,它可以将分散的知识融会贯通起来,加深学生对本课程所学知识内涵的理解。西北农林科技大学的课程设计是以机械传动方案设计为主要内容,正确地选择或合理地设计机构传动方案是整个设计成败的关键。为激发学生的创新思维,教师要求4~6人为一组,在一周的课程设计中,同组学生针对教师布置的设计题目或学生自主选题,提出多种不同设计方案,然后互相讨论从机构的可行性、对要求的符合程度以及机构的性价比等多方面综合考虑,最后确定出最佳传动方案并进行详细的结构设计。这种形式的讨论和方案选型,使学生对机械设计的流程有了大概了解,开阔了学生的视野,培养了学生的创新设计思维。

4 结束语

总之,机械原理教学改革的重点就是如何巧妙地引入创新设计的思想,使学生在掌握课堂知识的同时激发学生的学习兴趣,使学生主动去思考问题,进行创新设计。

参考文献

[1]孙桓,陈作模,葛文杰。机械原理[M].7版。北京:高等教育出版社,2006.

[2]孙恒。机械原理教学指南[M].北京:高等教育出版社,

1998.

[3]葛文杰。对机械基础课程教学方法改革的思考与探讨[J].中国大学教学,2009(10):4-7.

[4]郭红利,张李娴,张军昌,等。机械原理课程教学体系改革的探索[J].高等农业教育,2011(6):60-61.

机械原理课程设计 篇4

关键词 机械原理 科技创新活动 创新设计能力

中图分类号:G424 文献标识码:A DOI:10.16400/ki.kjdkz.2015.10.054

The Exploration of Mechanical Principle Course Teaching Based on

Extracurricular Technological Innovation Ability

WEI Junying, WANG Jidai

(College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590)

Abstract Aimed at the mechanical principle course teaching situation and existing problem, extracurricular technological innovation ability should be paid attention such as taking part in teacher's scientific research projects and technological innovation competition to combining mechanical principle knowledge with technological innovation. In this way teaching activities are implemented which has obtained good effect and improved students' ability in innovation design.

Key words mechanical principle; technological innovation ability; innovative design ability

指出“谋创新就是谋未来”,“科技发展的方向就是创新、创新、再创新”。面对复杂的国内外形势以及我国的改革环境和发展任务,“创新”已经成为21世纪产品的重要“代言人”。作为培养人才的高等教育领域,高度重视学生的创新设计与实践能力培养,努力培养出高等创造型人才是高校教师责无旁贷的责任。①

机械原理主要研究机构组成原理、常用机构的特点及应用与设计、机构运动学及机构动力学、机械系统的方案设计等问题,②是学生掌握设计能力、提高创新思维的重要知识基础,因此,有着其他课程不可代替的作用。③

1 机械原理教学现状

机械原理是高等院校机械类专业的一门十分重要的主干技术基础课程,这门课程的主要目的是让学生认识和了解机械、为机械类有关专业课程学习打好理论基础,更重要的是为机械产品的创新设计、现有机械的合理使用和革新改造打下良好基础。

目前,在机械原理的教学过程中,教师一般较为注重于去“教”机构原理、运动学及动力学分析这些基本知识。通常老师讲解得仔细透彻,但学生往往自主学习能力不强、不够积极,且机械原理有些知识比较抽象,很多学生头脑中对一些机构没有感性认识,因此往往不能很快掌握、进而问题遗留拖延,导致积累更多问题,课堂效率低下。④

1.1 课堂理论教学与工程实践脱节

目前,我校机械原理的教学模式仍然偏重于理论知识的教学,且学生对课程中涉及到的常用机构普遍缺少直观认识,因此对一些内容不能做到很好理解。机械原理是机械类专业一门重要的专业基础课,由于不能将课堂上学到的原理知识与实践相结合,因此很多学生对老师讲解的知识难以理解,很难打好机械入门的基础。尽管机械原理课程也有相应的实验环节安排,例如认识机构、机构运动简图绘制等,但多数学生基本上走马观花,对机构认识很肤浅,仍然不能与课堂上学过的机构、原理联系起来,故实验效果很差。

机械原理目前多采用多媒体教学辅助教学,在课件中也有大量机构及其原理的应用实例,但由于课堂教学学时有限,有些学生没有生活、生产中机构的实际应用概念,故不能很好地将这些实例与理论知识联系起来,这些都造成了理论教学与工程实践的脱节。

1.2 机械原理知识不能融入到创新设计中

机械原理课程中,有些内容是比较枯燥的,在授课过程中如果不能激发学生的兴趣和能动性,那么学生对课程知识的掌握就更加不理想。机械原理课程是设计道路上的第一道关口,学生创新设计能力是机械原理教学中很重要的环节。很多学生有许多新颖的构思和创新的思想,但教师不能很好地引导他们将机械原理理论知识融入到创新设计中,不能开拓他们的创新思维,因此学生不能充分发挥想象力和创造性思维,不能将课堂上学到的知识灵活应用于实践中。

2 改变教学模式,利用各种课外科技创新设计活动提高创新设计能力

目前,国内外高校都十分重视培养学生的科技创新能力,我校机械原理课程建设结合理论知识与工程实践之间的密切联系,突出了对学生综合设计能力、创造性思维及创新设计能力的培养。在创新设计能力培养方面,特别提出通过参与教师科研项目、科技创新模块等加强对学生能力的培养。⑤

2.1 教学模块突出创新设计能力培养

机械原理课程教学模块分为两大主要模块:课堂理论教学模块与实践教学模块。

在课堂教学模块中,动力设计模块、机构设计模块为机械原理的基础模块,通过其学习使学生掌握机械原理机构分析、机构设计的基本原理和方法。另外,综合设计模块是前两个模块的延伸和提高,主要进行机械系统方案的设计,要求学生在所学机械原理理论知识的基础上,结合各种实践经验,充分发挥个人主观能动性及想象力,灵活运用现代设计理论和方法、技巧,设计出新颖独特、节能高效、紧凑灵巧的机械系统,这些对于培养工科机械类专业学生的综合设计水平、创新设计能力有尤为重要的意义。

在实践教学方面,包含实验教学模块、课程设计模块和科技创新模块。前两个模块注重对学生机械原理基本知识的实践掌握和巩固,科技创新模块则注重于鼓励、支持学生参加政府、教育厅等各部门举办的各类科技创新竞赛活动,将所学理论知识应用到实践中,以提高他们创新设计的能力。

2.2 科研项目多参与

在机械原理课堂教学中,把教师的科研项目、科技创新的理念融入其中,加强对学生创新设计能力的培养。根据自己的科研项目开展相关机构创新的教学内容,例如在学习平行四边形机构时,结合科研项目码垛机器人手臂、钢制容器壁面爬行机器人手臂的研究,使学生加深对平行四边形机构运动特征、应用、设计及其存在问题的深入理解,鼓励学生将所学机械原理理论知识与科研项目中实际设计结合起来,这样既提高了学生学习机械原理的兴趣,掌握、巩固并应用了所学的理论知识,又极大提高了创新设计能力和工程实践能力。

2.3 课外科技创新竞赛活动多参与

为了提高学生的创新设计能力,学校建立了三个层次的大学生课外科技创新活动的组织机构和保障、各种奖励措施对学生的课外科技活动提供制度及物质保障。⑥其中,第一层次为学生科技创新领导小组,由学校领导和有关职能部门牵头,另外由各领域知名专家教授组成,负责课外科技创新活动的发展规划和开展、筹集活动资金、工作协调及评比表彰等;第二层次为教学管理与服务组织,主要由学校教务处、科研处等具体实施、监控部门以及各二级学院的教学管理部门组成,负责课程教学过程的具体设计和组织实施、质量监控等;第三层次为课外科技创新活动组织实施,由共青团、学生会、各类学生社团等组成,负责课外科技创新实践活动的规划与具体实施。学校相关部门制定各类科技活动及竞赛奖励办法,依据参加赛事级别及获得奖项名次等级及时给予相应的表彰与奖励。

通过这些课外科技活动组织、保障措施和激励机制,能持续鼓励、支持保障学生参加各类课外科技创新实践活动,如山东省挑战杯大学生课外学术科技作品竞赛、山东省大学生机电产品创新设计竞赛、山东省大学生科技创新大赛。学生根据竞赛主题与相关要求,结合所学理论知识,充分发挥想象力和创造性思维进行构思设计,构建产品的虚拟样机或实物模型,将理论与实践结合,极大提高了创新设计和工程实践的能力。

3 各类课外科技创新设计实践活动成果

目前,各种科技创新竞赛活动已成为大学生素质教育的重要项目。在课题组相关老师参与及指导下,学生能够在学习机械原理课程过程中或者结束该课程后,积极参加各种创新设计竞赛。在近几年参与大赛中,取得全国大学生机械创新设计大赛中二等奖2项,全国大学生过程装备创新与实践大赛中二等奖1项、三等奖2项;在第十四届山东省挑战杯学生课外学术科技作品竞赛中获得特等奖并推荐进入国赛;山东省大学生机电产品创新大赛中获一等奖9项、山东省大学生首届科技创新大赛一等奖1项、山东省电子产品设计大赛中获得一等奖1项等等。这些荣誉和奖项极大鼓舞了大学生们参加科技创新实践活动的积极性,提高了他们学习机械原理等课程的兴趣,更重要的是提高了将理论知识与实践相结合的能力、创新设计的能力。

4 结语

创新设计能力是工科机械类专业学生培养过程中非常重要的一个环节。本文分析了机械原理课程教学现状及其存在问题,提出在教学过程中融入创新设计,将科技创新实践与教学活动相结合,鼓励支持学生参与教师科研项目、参加各类科技创新竞赛。通过在教学活动中实践,极大提高了学生创新设计与工程实践的能力,取得了预期效果。

注释

① 袁爱霞,高中庸,李宝灵。机械原理与机构创新设计[J].高教论坛,2007(6):78-79.

② 孙桓,陈作模,葛文杰。机械原理[M].高等教育出版社,2006.

③ 侯莉侠,侯俊才,郭红利等。在机械原理课程教学中引入创新设计的探讨[J].中国教育技术装备,2014(24):139-140.

④ 巫海平。机械原理教学与创新设计相结合的实践与探索[J].职业技术,2013(6):149-150.

机械原理课程设计范文 篇5

关键词:机械基础系列课程;课程体系;课程改革;课程模块化;课程综合化

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)32-0100-04

机械基础系列课程在机械类专业人才培养中占有极重要的地位,其教学内容和课程体系的建构直接关乎人才培养的质量。所谓机械基础系列课程,主要是指工程图学、机械原理、机械零件、机械设计,金属工艺实践、互换性与测量技术、力学基础等。因此,机械基础系列课程的改革“既是工科各相关专业基础课程改革的重要组成部分,也是机械学科教学改革的重点和难点。围绕机械学科的培养目标和培养模式构建新的系列课程体系,将对我国机械类人才培养乃至机械制造业发展产生重大影响。”[1]

我国大规模的机械基础系列课程体系和教学模式的改革始于20世纪90年代中期。经过了二十年的改革取得了一些可喜的成果,但在一些方面仍有改革的空间。本文通过查阅二十年来国内高校发表的机械基础系列课程教学改革的文献,试图通过陈述、分析和评论,梳理改革的成就和不足,以期今后的教学改革更加具有针对性。改革的具体目标集中于删减课程内容、建立新的课程体系、课程体系模块化以及课程高度综合化等几个方面。

一、机械基础系列课程体系改革的必然性

高校的课程体系是高等学校人才培养目标的主要载体,是高校教育思想和教育观念付诸于实践的桥梁。它体现教育价值理念。如果说大学人才培养目标只是对学生知识、能力和素质方面提出的应然要求,则课程体系在很大程度上决定学生所能呈现的知识、能力和素质结构的教育实然。因此,课程体系的构建和改革问题是大学教育的关键问题,[2]科学合理的课程体系是保障和提高教学质量的重大因素。传统的机械基础系列课程体系形成和成熟于高等工科教育理念以知识传授为目标,和机械加工以机床加工为主要手段的时代。有两个原因说明改革是必然的。

1.随着信息化时代的到来,知识爆炸,任何人都无法获取如此丰富的知识。因此,必须摈弃传统的以知识获取为终结目标的培养体系,重构以培养学生的工程意识和创新设计能力为主线的新体系。

2.现代机械制造已由原来的机床加工转向数控加工。数控加工集机械、控制和计算机信息三位一体,是机、电、液和计算机技术的高度集成。因此,必须以数控加工为龙头,重构新的课程体系,拓宽机械基础,更新机械类专业的教学内容,促进系列课程体系的建设。[1]

因此改革成败的关键是能否建立科学合理的机械基础系列课程体系。

二、机械基础系列课程体系二十年改革举措与内涵

二十年来,机械基础系列课程体系的改革可谓是改革重中之重。目前构建新的体系有如下几种举措。

(一)依据培养目标与现代工程科学技术实际,优化课程体系,整合、重组重点课程。

整合、重组重点课程,即对原来的课程体系进行削枝强干和有机重组的改革措施,重构一门或两门综合性较强的核心课程。精简传统课程的门类,对一些陈旧过时、实用性较差的内容进行删减,对内容重复出现较多的课程进行合并,形成新的课程体系。典型案例如兰州工业高等专科学校,其新的课程体系以工程应用为主线,将理论力学、材料力学、机械原理与机械零件四门课程教学内容有机整合、融揉一体,形成机械力学与机械设计这样一门综合性的技术基础新课程。该新课程体系特点体现为:①将力学中相关摩擦、机构的运动分析等原理渗透到机械设计的全过程,涉及设计环节中的力学问题合并至同一课题中,避免重复。②将动力学部分内容重点置于惯性力、达朗伯原理、刚性转子平衡、机械运动速度波动调节等上。将理论力学中基础理论部分分散至机构运动分析与力分析中,相关机构则突出运动分析与设计,零件设计则注重其失效分析、计算准则及工作能力设计。并简化理论推导与论证,突出“学以致用”,立足基础理论以够用为度。③围绕工程应用实例,跨越原有学科体系,按通用机械的设计过程组织教学内容,梯次引出各种必需概念,重点突出各种概念和公式的物理意义和应用场合,使之相互揉合,有机地融为一体,增强工程氛围。④在保证原课程基本要求条件下,教学课时得以大幅度缩减。将省出的学时用于实践教学和新知识、新技术、新工艺的学习,增强实践能力。⑤强调在机械零件课程设计中采用AutoCAD、KMCAD等软件进行绘图,将计算机技术贯穿于图学教学全过程,增强培养计算机技术应用能力。[3]

重庆大学从工程应用原则出发,取消公差与技术测量课程,将尺寸公差的定义与标注、标准融入机械制图的零件图、装配图中;将表面粗糙度、形位公差的定义及作用融入机械制造基础,结合相应的加工过程与实现方法及成本等内容进行授受。而将公差与配合的正确选用融入机械设计中,结合零件与传动系统的功能结构设计进行授受,以帮助学生进一步理解公差配合的实质和正确选用的原则。[4]

此外,还有如北京科技大学将机械原理、机械零件和机械制图并为机械设计制图[5];佳木斯大学将机械原理和机械零件并为机械设计,机械制图与计算机辅助制图并为现代机械制图[6];天津科技大学将机床概论、金属切削原理和机械制造工艺学合并精简为机械制造技术基础[7];番禺职业技术学院和顺德职业技术学院将原机械制图、机械设计基础和机械制造技术基础三门课整合为机械分析制造技术基础。[8]国防科学技术大学并机械制图与互换性与技术测量为机械制图[9]等,都是通过整合内容达到减少课程名类的。

(二)以设计为主线,理顺、协调、优化组合教学内容,对课程体系进行模块化设计

机械基础系列课程设置模块化是许多高校进行课程体系改革的又一尝试热点。其典型案例如北京理工大学、中南大学、中北大学、山西农业大学、北京工业职业技术学院等院校。

北京理工大学从整体优化的角度对课程内容进行整合,将原来的工程图学、机械原理、机械设计、互换性及测量技术四门机械基础系列课的重组为机械概论、制图设计、精度设计、机构设计、机械设计和综合设计六个模块,体现以综合设计能力培养为主线,创新设计能力培养为核心,现代设计能力培养为关键,把各门课群的各教学环节融入系列课的整体规划中,并进行优化重组,形成了一个完整的新体系。[10]

中南大学则是根据能力培养层次,将课程体系划为机械构形与表达能力、机械设计基础能力、机械制造工艺基础能力和创新能力四大模块。分别以工程制图课程和计算机辅助绘图课程教学为主,培养学生空间构思能力和将设计意图用工程图的表达能力;以机械原理和机械零件课程教学为主,培养学生进行总体方案设计、分析、择优和零件结构设计的能力;以常用制造方法及设备的确定、公差、零件加工工艺规程的编制、质检方法与技术为主,由金工实习完成,培养学生的工程实践能力;以机械产品创新的基本原则、创新思维方式与方法、创新设计实例分析为主,培养学生的创新意识、创新思维和创造设计能力。[11]

河北农业大学将机械基础系列课程划分成绘图、力学、机械制造、气液传动四大模块。其中,绘图模块作为机械设计制造的表达方式,为后续课程学习和设计提供有利的工具;力学模块中,并理论力学和材料力学为工程力学,以建立动、静两者之间的有机联系,便于联合解决工程力学问题;并机械原理和机械设计为机械工程设计原理,简化强度校核,增加利用软件进行强度校核试验内容,用综合实验完成机械原理和机械设计部分实验;机械制造模块由材料成型技术基础、工程材料和机械制造技术基础三部分构成。材料成型技术基础重点介绍后续课程中不涉及的内容。工程材料中,纳米技术及精密加工、超精密加工技术、材料的微观结构、不锈钢材料及热处理作为重点内容。机械制造技术基础部分进行了较大幅度整合。机床、刀具、切削原理部分加入数控机床及刀具;互换性与技术测量部分的尺寸链内容调整到机械制造工艺学部分,配合及项目标注调到绘图模块,只介绍测量及特征,适当增加误差理论与数据处理内容;机械制造工艺学部分加大成组技术内容量;为后续CAD/CAM课程中CAPP内容打下基础。气液传动模块中,把流体力学从力学模块调至气液传动模块,使理论与应用紧密结合。加大电液伺服内容,以便掌握模糊控制和智能控制技术。[12]

此外,山西农业大学则是按照零件的种类划分模块,以“齿轮传动设计”、“轴系结构设计”、“标准件选型设计”等进行模块化教学的设计和实践,形成跨课程甚至跨多学科的课程体系。[13]北京工业职业技术学院则是将课程体系分为总论、机械设计计算、机械常用金属材料及热处理、机械加工及精度、机械设计基础和计算机辅助设计六个模块。其目的是有利于在各专业在制订教学计划时,保证必要的学时数,从而保证正常教学顺序和教学质量,满足不同专业的需求,达到有的放矢、因材施教的目的。[14]

(三)借鉴国外先进经验,推进课程体系高度综合化

20世纪60年代以来,科学知识激增。为解决科学知识的急剧增长与学校教育时间的相对有限这一矛盾,课程综合化是世界各国课程改革的重要发展趋势。目前,美国的著名大学中,课程的综合化程度非常高,例如,MIT的机械系列课程“设计和制造Ⅰ、Ⅱ”就包括设计过程、机械设计、制造过程和系统、质量和过程控制等内容,包含了我国现阶段的若干门课程,甚至是跨学科的交叉的课程[15];密歇根大学的机械工程课程体系是ME250、ME350、ME450课程。其中ME250即固体力学与材料系列,是我国目前理论力学、材料力学和工程材料三门课的综合;ME350即热与流体系列课程,包含工程热力学、传热学和流体力学等课程;而ME450即设计与制造系列课程,包括机械制图、机械原理、机械设计以及有关机械制造的一些知识等[16]。加州大学圣地亚哥分校工程制图与设计引论课程融合了制图、设计、制造、2D和3D CAD、加工知识等内容[17]。

目前,国内率先实施机械基础系列课程高度综合化的高校是上海交通大学。该校的改革始于2000年,依据打破原有课程设置的界限,建立新型的机械基础系列课程体系,实现两个转变,即传统设计向现代设计转变、传授设计知识向培养设计能力转变,为培养具有开拓精神的高级设计人才打下扎实基础的指导思想与目标,借鉴美国密歇根大学的设计与制造系列课程体系,对其原来的机械工程专业课程做出整合和调整,实现课程综合化[16]。改革取得了一定成效,但也遇到一些具体的困难。

(四)紧贴时展需求,依据少而精的原则,精选和适时更新教学内容

知识的爆炸与发展,学科的不断分化与细化,使课程门类不断增多。而学生的学习时间和精力总是有限度,这就要求构成课程体系的课程内容必须去粗取精,却旧迎新。课程体系改革还应考虑如何使课程链中内容的整体优化,追求教学的最佳效果。

清华大学于20世纪90年代初就以优化知识结构,向学生传授有用知识为出发点,对工程制图、机械原理、机械设计基础等课程内容和体系进行了大调整。将机械制图教学重点放在零部件的表达、视图选择及徒手绘制草图的能力上,同时增加创造性构形设计思维的内容;机械原理由过去以机构分析为主的教学体系改为以机构设计为主的教学体系,增加机械方案创造性设计等环节。机械设计基础则按设计过程建立包括机械运动方案设计、机械零部件工作能力设计和机械零部件结构设计三部分内容的新教学体系。教学内容进行精选优化,各门课内容体现传授最有用知识,改革成效明显[18]。

西北工业大学以机械设计为主线,侧重学生工程素质、综合应用和创新设计能力培养建立系列课程新体系,根据新体系进行课程之间教学内容的整合、协调和优化。精选课程内容。工程制图课程加强学生徒手绘草图、仪器绘图及计算机绘图能力的训练;工程材料及机械制造基础课程精选典型材料毛坯成型工艺和传统机械制造工艺等基本内容,充实现代工程新材料、新工艺和现代先进制造技术有关的内容,以加强学生对选材、零件与毛坯形成工艺和机械加工工艺设计能力的培养;机械原理课程加强学生机构综合应用和机械运动方案创新设计能力的培养;机械设计加强机械系统总体设计和结构创新设计能力的培养。[19]

天津科技大学在机械原理、机械设计、材料成型工艺基础和机械制造技术基础等课程中增加计算机应用方面的内容。[20]

三、机械基础系列课程体系改革20年综合评析

我国机械基础系列课程体系的改革起步晚,时间不长,但是有了一个良好的开端,同时还有国外的一些成功经验可资借鉴,可以期望能有一个美好的未来。笔者在以上分析的基础上,梳理我国高校机械基础系列课程体系20年改革的得失,有如下几个特点。

1.改革在全国范围内各高校展开。本研究虽然只是参阅了公开发表的近100所高校的有关机械基础系列课程体系改革的情况,但它们涉及到我国工科高等教育各个层次的方方面面,具有广泛的代表性。一些院校虽没有公开发表有关的举措的文章,但改革已经有了实际的行动。

2.改革在稳妥中进行。教学改革是一项关乎人才培养成功与否、需要极其严肃和认真对待的大事。因此,改革,只能“改良”、“改好”,不能“改劣”、“改坏”。课程的实施最少是5年为一个周期,如果改好,固然收益,如果改坏,则至少影响5届学生,可谓贻害无穷。文献资料显示了大部分院校采取了稳妥的步骤,先提出一些方案,再经过认真讨论和论证,最后稳妥逐步实施。

3.改革总体尚处于初始阶段。我国绝大多数工科高校建校时间不长,而且机械专业均脱胎于苏联模式或深受其影响。改革开放后,几乎都经过了一个较长时期的痛苦抉择和改革设想的酝酿阶段。目前,清华大学、上海交通大学、华中科技大学等名校起步较早,在改革的道路上行进较远,步子也较大。一些高校进行了初步尝试,并取得了一定的成效。但也还有相当多的高校仅仅只是提出了初步的设想。

4.重视学生创新设计能力的培养。各校都把培养学生的机械创新设计能力、创新思维、动手能力、综合设计能力和激发学生创新设计积极性摆在重要的位置。

5.课程门类和课时数略有减少。改革试图减少改革试图减少课程门类,减少课时数,提高教学效率,课程体系的综合化和交叉性有所提高。

6.课程内涵体现了先进性和时代性。随着科学技术的不断向前发展,机械工程的内涵和外延都在不断扩充。主题在变,问题在变,活动在变,要求机械基础系列课程体系内涵紧跟时展的步伐,实时引入了新内容。

然而,正如特点3所说,改革还只停留在初步阶段,其成效非常有限,这种局限性与不足通过国家精品课程建设结果可以得到证实。笔者从国家精品课程建设网上得知,始于2000年前后的国家精品课程建设,固然对提高机械基础系列课程教学质量起到了非常积极的作用。教育部共批准机械工程部级精品课程603门,其中大多数为机械基础系列课程。较多的如“机械设计”课程被评为部级精品课的有46所高校,“机械原理”有51所,“机械设计基础”有28所,“工程制图”或“工程图学”共有60多所,“机械制图”有14所,“画法几何及机械制图”有10所,“画法几何及工程制图”有8所,“机械制造基础”或“机械制造技术基础”共有36所,“工程训练”有9所,“互换性与技术测量”有9所。[21]这些数据一方面说明,我国工科大学的机械基础系列课程的教学条件和质量得到了较大幅度的提升。但从另一个角度来看问题,也可表明,虽然课程的高度综合化和交叉性成为全球大学的共识,但在我国现阶段,真正具有综合性和交叉性的课程和高校还极其少,像清华大学的“设计系列课”综合性精品课程成为凤毛麟角。各校的机械基础系列课程仍是以沿袭传统的课程体系为主的形式,各课程之间的分化和自守,使已形成的自身独立的学科系统难以打破藩篱。二十年来大部分改革仅在本课程系统内进行,始终围绕自成系统、自我完善与发展,追求各自的系统性和完整性而做着不懈努力。课程的综合性和交叉性还远远不够,一些改革仍然还停留在研究和纸上谈兵阶段,离现代大机械背景下的时代需求还有相当的距离。机械基础系列课程体系改革空间仍然很大,任重而道远。

参考文献:

[1]周济,戴同。构建面向21世纪的机械基础系列课程体系[J].高等工程教育研究,1999,(2):7-10.

[2]崔颖。高校课程体系的构建研究[J].高教探索,2009,(3):88-90.

[3]穆玺清,郑增铭。机械设计基础系列课程的教学研究与实践[J].兰州工业高等专科学校学报,2000,7(4):29-31.

[4]黄茂林,何玉林,秦伟,祖业发,李俊。加强能力培养 进行机械基础系列课程的改革与实践[J].重庆大学。

[5]尹常治,杨皓。机械基础系列课程教学内容体系改革探索[J].工程图学学报,2000,(4):19-24.

[6]朱聪玲,刘向东。高校工科机械类专业技术基础课程的问题与改革[J].中国高教研究,2004,(6):76-77.

[7]王忠祥,张付英,刘卉。机械设计基础系列课程教学内容的整合[C].全国机械设计教学研究,2005:142-144.

[8]周华,覃岭,朱敏。关于机械类专业技术基础课教学体系改革的探索[J].职业教育研究,2008,(4):96-97.

[9]易声耀,尚建忠,张湘,徐海军。基于“做中学”教育理念的机械制图教学改革与实践[J].图学学报增刊,2013,(总34):109-116.

[10]张彤。机械基础系列课教改的实践[J].工程图学学报,1999,(3):69-73.

[11]夏建芳。论机械基础教学新体系的构建[J].现代大学教育,2003,(1):66-68.

[12]弋景刚,张秀花,赵树朋,王泽河,夏玲,张世芳,李静,王凤礼。面向创新能力培养机械基础系列课程优化整合的研究[C].全国机械设计教学研讨会议,2003:233-235.

[13]贺俊林,郭玉明,张淑娟,赵美香,胡娟,冯晚平。机械基础系列课程新体系与模块化教学[J].山西农业大学学报(社会科学版),2006,5(2):172-173,180.

[14]张守英,张小亮,牛小铁,黄宇婷。“机械技术”课程教学改革及建设[J].北京工业职业技术学院学报,2005,4(4):66-68,80.

[15]郑大钟,陈希。MIT工学院机械工程系的本科新课程体系[J].清华大学教育研究,1997,(2):52-55.

[16]应乐安。理工专业综合课程改革初探[D].上海交通大学硕士学位论文,2005:22,32-35.

[17]姚健,申永胜,黄纯颖,刘朝儒。机械设计系列课程体系改革的实践与思考[J].清华大学教育研究,1994,(1):37-43.

[18]周琴,王成彪,吕建国,李伟青。美国加州大学圣地亚哥分校机械专业课程设置及教学特点与人才培养模式的研究[J].中国地质教育,2009,(1):61-64.

[19]葛文杰。机械基础系列课程教学改革研究与实践。西北工业大学学报(社会科学版),2003,23(3):83-85.

[20]王平,沈晓阳。机械类专业机械基础系列课程教学改革的实践[J].理工高教研究,2005,24(2):57-58.

机械原理课程设计 篇6

课程设计说明书

题目名称:平面六杆机构

学院:机械工程学院 专业:机械设计制造及其自动化 学生姓名:杨鹏

班级:机英102班 学号:10431042

一、设计题目及原始数据

二、设计要求

三、机构运动分析与力的分析

1、机构的运动分析

位置分析:θ=θ。+arctan(1/2)﹦〉θ。=θ-arctan(1/2)机构封闭矢量方程式:L1+L2-L3-LAD=0 L1^(iθ1)+L2(iθ2)=LAD+L3^(iθ3)

实部与虚部分离得:l1cosθ1+l2cosθ2=lAD+l3cosθl1sinθ1+l2sinθ2= l3cosθ3 由此方程组可求得未知方位角θ3。

当要求解θ3时,应将θ2消去,为此可先将上面两分式左端含θ1的项移到等式的右端,然后分别将两端平方并相加,可得 l2^2=l3^2+lAD^2+l1^2+2*l3*lAD*cosθ3-2*l1*l3*cos(θ3-θ1)-2*l1*lAD*cosθ1 经整理并可简化为:Asinθ3+Bcosθ3+C=0

式中:A=2*l1*l3*sinθ1;B=2*l3*(l1*cosθ1-lAD);

C=l2^2-l1^2-l3^2-lAD^2+2*l1*l4*cosθ1;解之可得:

tan(θ3/2)=(A-√(A^2+B^2-C^2))/(B-C)θ3=2*arctan((A-√(A^2+B^2-C^2))/(B-C))-arctan(0.5)在求得了θ3之后,就可以利用上面②式求得θ2。

θ2=arcsin(l3sinθ3-l1sinθ1)将①式对时间t求导,可得

L1w1e^(iθ1)+L2w2e^(iθ2)=L3w3e^(iθ3)③

将③式的实部和虚部分离,得

L1w1cosθ1+L2w2cosθ2=L3w3cosθ3 L1w1sinθ1+L2w2sinθ2=L3w3sinθ3 联解上两式可求得两个未知角速度w2、w3,即

W2=-w1*l1*sin(θ1-θ3)/(l2*sin(θ2-θ3))W3=-w1*l1*sin(θ1-θ2)/(l3*sin(θ3-θ2))

且w1=2π*n1 将③对时间t求导,可得

il1w1^2*e^(iθ1)+l2α2*e^(iθ2)+il2w2^2*e(iθ2)=l3α3*e^(iθ3)+il3w3^2*e^(iθ3)将上式的实部和虚部分离,有

l1w1^2*cosθ1+l2α2* sinθ2+l2w2^2* cosθ2=l3α3* sin

θ3+l3w3^2* cosθ3-l1w1^2* sinθ1+l2α2* cosθ2-l2w2^2* sinθ2=l3α3*

cosθ3-l3w3^2* sinθ3 联解上两式即可求得两个未知的角加速度α

2、α3,即

α2=(-l1w1^2*cos(θ1-θ3)-l2w2^2*cos(θ2-θ3)+l3w3^2)/l3*sin(θ2-θ3)α3=(l1w1^2*cos(θ1-θ2)-l3w3^2*cos(θ3-θ2)+l2w2^2)/l3*sin(θ3-θ2)在封闭矢量多边形DEF中,有LDE+LEF=LDF 改写并表示为复数矢量形式:lDE*e^(iθ3)+lEF*e^(iθ4)=lDF

将上式对时间t求导,可得

lDE*w3* e^(iθ3)=-lEF*w4*e^(iθ4)④

将上式的实部和虚部分离,可得

lDE*w3*sinθ3=-lEF*w4* sinθ4 lDE*w3*cosθ3=-lEF*w4* cosθ4 =>w4=-lDE*w3*sinθ3/lEF* sinθ4 将④式对时间t求导,可得

ilDE*w3^2* e^(iθ3)+lDE*α3* e^(iθ3)=-ilEF*w4^2* e^(iθ4)-lEF*α4* e^(iθ4)将上式的实部和虚部分离,有

lDE*α3* sinθ3+ lDE*w3^2* cosθ3=-lEF*α4* sinθ4-lEF*w4^2* cosθ4 lDE*α3* cosθ3-lDE*w3^2* sinθ3=-lEF*α4* cosθ4+lEF*w4^2* sinθ4 =>α4=-(lDE*α3* sinθ3+ lDE*w3^2* cosθ3+ lEF*w4^2* cosθ4)/ lEF* sinθ4 在三角形∠DEF中:lAD^2=lDF^2+lDE^2-2*lDF*lDE*cosθ3 ﹦〉lDF=lDEcosθ3+√(lAD^2-lDE^2sinθ3)

即从动件的位移方程:S= lDF=lDEcosθ3+√(lAD^2-lDE^2sinθ3)将上式对时间求导t得,从动件的速度方程: V=-lDEsinθ3-lDE^2*sin(2*θ3)_/(2* √(lAD^2-lDE^2sinθ3))将上式对时间求导t得,从动件的加速度方程:

a=-lDEcosθ3-(lDE^2*cos(2*θ3)*√(lAD^2-lDE^2sinθ3)+lDE^4*sin(2*θ3)^2/(4*(2* √(lAD^2-lDE^2sinθ3)))/(lAD^2-lDE^2*sinθ3^2)

2、机构的力的分析

先对滑块5进行受力分析,由∑F=0可得,Pr=F45*cosθ4+m5*a FN=G+F45*sinθ4 得F45=(Pr-m5*a)/ cosθ4 在三角形∠DEF中,由正弦定理可得

lDE/sinθ4=l4/ sinθ3=>sinθ4=lDE* sinθ3/l4 =>θ4=arc(lDE* sinθ3/l4)再对杆4受力分析,由∑F=0可得,F34+FI4=F54且FI4=m4*as4、F54=-F45 =>F34=F54-FI4=>F34=-F45-m4*as4 Ls4=LAD+LDE+LEs4 即 Ls4=lAD+lDE*e^(iθ3)+lEs4*e^(iθ4)将上式对时间t分别求一次和二次导数,并经变换整理可得Vs4和as4的矢量表达式,即

Vs4=-lDE*w3*sinθ3-lEs4*w4*sinθ4 as4=-lDE*w3^2*cosθ3+lEs4*α4*sinθ4+w4^2*lEs4*cosθ4 对杆2、3受力分析:有MI3=J3*α3 l3^t*F23-MI3=l3* e^i(90°+θ3)*(F23x+iF23y)-MI3

=-l3*F23x* sinθ3-l3*F23y* cosθ3-MI3+i(l3*F23x* cosθ3-l3*F23y* sinθ3)=0 由上式的实部等于零可得

--l3*F23x* sinθ3-l3*F23y* cosθ3-MI3=0 ⑤ 同理,得

l2^t*(-F23)=-l2* e^i(90°+θ2)*(F23x+iF23y)= l2*F23x* sinθ2+l2*F23y* cosθ2+i(l2*F23x* cosθ2+l2*F23y* sinθ2)=0 由上式的实部等于零,可得

l2*F23x* sinθ2+l2*F23y* cosθ2=0 ⑥ 联立⑤、⑥式求解,得

F23x=MI3* cosθ2/(l3* sinθ2* cosθ3-l3* sinθ3* cosθ2)F23y=MI3* sinθ2/(l3* sinθ3* cosθ2-l3* sinθ2* cosθ3)根据构件3上的诸力平衡条件,∑F=0,可得

F32=-F23 根据构件2上的力平衡条件,∑F=0,可得

F32=F12 对于构件1,F21=-F12=>F21=F23 而M=l1^t*F21=l1*e^i(90°+θ1)*(F21x+iF21y)=l1*F21x*sinθ1+l1*F21y*cosθ1+i(F21x*cosθ1-F21y*sinθ1)由上式的等式两端的实部相等可得: M=l1*F21x*sinθ1+l1*F21y*cosθ1

=>M=l1* F23x*sinθ1+l1* F23y*cosθ1

四、附从动件位移、速度、加速度的曲线图、作用在主动件上的平衡力矩的曲线图

五、机构运动简图

CEθ2Bθ1ADθ4θ3F

六、设计源程序

位移程序:

clc;clear l1=0.08;l2=0.3;l3=0.3;l4=0.2;l5=sqrt(0.2);t=0:0.01:2*pi;for i=1:length(t);x1=t(i);A=2*l1*l3*sin(x1);B=2*l1*l3*cos(x1)-2*l3*l5;C=l2^2-l1^2-l3^2-l5^2+2*l1*l5*cos(x1);k=(A-sqrt(A^2+B^2-C^2))/(B-C);x3=2*atan(k)-atan(0.5);s=0.5*l3*cos(x3)+sqrt(l4^2-(0.5*l3)^2*(sin(x3)^2));q(i)=s;end

plot(t,q)title('滑块的位移随x1的变化曲线')速度程序:

clc;clear l1=0.08;l2=0.3;l3=0.3;l4=0.2;l5=sqrt(0.2);t=0:0.01:2*pi;for i=1:length(t);x1=t(i);A=2*l1*l3*sin(x1);B=2*l1*l3*cos(x1)-2*l3*l5;C=l2^2-l1^2-l3^2-l5^2+2*l1*l5*cos(x1);k=(A-sqrt(A^2+B^2-C^2))/(B-C);x3=2*atan(k)-atan(0.5);

v=-0.5*l3*sin(x3)-((0.5*l3)^2*sin(2*x3))/(2*sqrt(l4^2-(0.5*l3)^2*(sin(x3)^2)));;q(i)=v;end

plot(t,q)title('滑块的速度随x1的变化曲线')加速度程序:

clc;clear l1=0.08;l2=0.3;l3=0.3;l4=0.2;l5=sqrt(0.2);t=0:0.01:2*pi;for i=1:length(t);x1=t(i);A=2*l1*l3*sin(x1);B=2*l1*l3*cos(x1)-2*l3*l5;C=l2^2-l1^2-l3^2-l5^2+2*l1*l5*cos(x1);k=(A-sqrt(A^2+B^2-C^2))/(B-C);x3=2*atan(k)-atan(0.5);a =-(3*cos(x3))/20(9*sin(x3)^2)/400)^(1/2))(9*sin(x3)^2)/400)^(3/2));q(i)=a;end

plot(t,q)title('滑块的加速度随x1的变化曲线')平衡力偶程序:

clc;clear l1=0.08;l2=0.3;l3=0.3;l4=0.2;l5=sqrt(0.2);J3=0.01;n1=400;t=0:0.01:2*pi;for i=1:length(t);z1=t(i);

A=2*l1*l3*sin(z1);B=2*l1*l3*cos(z1)-2*l3*l5;

C=l2^2-l1^2-l3^2-l5^2+2*l1*l5*cos(z1);k=(A-sqrt(A^2+B^2-C^2))/(B-C);z3=2*atan(k)-atan(0.5);

z2=asin(l3*sin(z3)-l1*sin(z1));w1=2*pi*n1;

w2=(-w1*l1*sin(z1-z3))/(l2*sin(z2-z3));w3=(-w1*l1*sin(z1-z2))/(l3*sin(z3-z2));

a3=(l1*w1^2*cos(z1-z2)-l3*w3^2*cos(z3-z2)+l2*w2^2)/l3*sin(z3-z2);MI3=J3*a3;

F23x=MI3* cos(z2)/(l3* sin(z2)* cos(z3)-l3* sin(z3)* cos(z2));

F23y=MI3* sin(z2)/(l3* sin(z3)* cos(z2)-l3* sin(z2)* cos(z3));M=l1* F23x*sin(z1)+l1* F23y*cos(z1);q(i)=M;end plot(t,q)

title('构件1的平衡力偶随z1的变化曲线')

七、设计心得

这次课程设计让我对机械成品的诞生有了一个初步的认识,没想到一个简单的连杆机构都那么复杂,很多应该提前掌握的原理,知识,我们都是现学现卖,真是汗颜,而matlab也是我们才接触不久的,虽然加强了我自主学习的能力,但也是对我一个很大的挑战。我以前学习过C语言,本以为对编程有点底子,会好很多,可是事实上却并非如此,还是不停的出现各种问题,只好不停的完善,重来。从刚刚接触的matlab,一步步的熟悉它,到最终完成这次的课程设计,这些让我们的假期充实不少。相信这次课程设计,会为我们下学期学机械设计课程,打下一个良好的基础,如此而已。

八、主要参考资料

1.机械原理第七版课本; 2.MATLAB程序编程; 3.理论力学课本等;

CEθ2Bθ1ADθ4θ3F

图表 1

机械原理课程设计 篇7

关键词:机械原理;教学改革;面向设计

中图分类号:G642.0?摇 文献标志码:A 文章编号:1674-9324(2013)36-0213-03

机械原理课程一直是我国机械类专业的一门重要的技术基础课,从机械类课程的体系来看,机械原理课程起着承上启下的作用。力学、机械制图和金工实习等课程使学生有了机械设计的理论基础和初步工程背景,从机械原理课程开始步入培养设计能力和创新意识阶段。因此在面向应用型人才培养的教学改革中,机械原理课程的教学改革一直处于前沿和热点的地位,起着举足轻重的作用。机械原理课程是机械系统设计和机器人技术的重要基础,与现代机械设计密切相关。显然长期以来以机构分析为主的教学模式已不能适应时代对人才培养的要求,尽管人们已经意识到这一点,但目前在机械原理课程中,存在的普遍问题是对设计能力和创新意识培养效果不够明显。

因此,通过对专业培养目标及机械类课程的分析和研究,根据机械原理课程地位、内容和特点,我们提出面向设计的机械原理教学改革的指导思想,即以机构设计为主,具有机械系统方案设计能力为目标。

一、以机构设计为中心,重构教学体系,组织教学内容

由于我国过去传统机械行业主要是以引进先进技术消化吸收为主,机械设计是以经验加经典理论分析计算的模式,因此机械原理课程一直是以机构分析为主的教学体系,它的优点是可以培养学生扎实的机构学理论基础,而忽视了对学生综合设计能力和创新意识的培养。突出问题是学生到了机械系统设计课程及毕业设计时还不具备应有的机构设计能力,21世纪已进入技术创新的时代,现代机械设计需要的是设计和创新能力。过去机械原理课程体系的弊端在近年来应用型人才培养中日显突出。为此,机械原理课程以机构分析为基础,机构设计为主来构建教学体系和组织教学内容。

围绕机构设计展开教学。机械原理课程的重点内容是各种常用机构的设计及应用,以机构设计为中心组织教学内容,对于典型机构,加强机构特性、应用特点讲解,重点讲解机构的组成、演化变异,培养学生的分析问题和创新思维能力。减少和理论力学重合的分析部分内容,系统讲解机构的运动分析和动力分析。避免过去机构设计建模时,单一强调数学方法,善于考虑实际要求和条件,学会运用工程化的建模方法,解决设计问题。机构设计有图解法和解析法,图解法在过去的工程设计中起到过重要的作用。随着计算机技术的发展,现代机械工程设计已进入建模加计算机辅助设计时期,解析法越来越得到人们的重视和认可。但图解法简便直观,有助于学生对基本概念、基本理论的理解。因此,在教学中机构设计以解析法为主,图解法主要用来进行机构分析,为设计服务。现代机械设计发展较快,机械原理课程应能反应机械设计的新成果、新技术,而课程有些内容已显陈旧、没有实际意义。我们针对机械原理课时少、内容多的矛盾,删去课程中一些陈旧、过时的内容,如对连杆机构设计的图解法,删去实验法和图谱法,保留实用的、对机构分析有用的内容。对新成果和新技术的讲解,采用介绍性的方法,让学生了解所学知识的发展前沿,开阔视野、培养学习兴趣和创新意识。

在课堂中适时引入现代设计的技术和方法,使教学改革跟上发展的步伐。现代工程技术中已有多种对机械系统进行计算机辅助设计的方法,解析法是建模加计算机辅助设计。一般课堂教学中,解析法一般讲到建模,学生对解析法的学习处于方法原理阶段。在教学中通过典型机构例子演示编程及工程软件的应用。如在曲柄连杆机构教学中,用解析法建模后,演示用matlab编程,输出构件的运动和动力学分析曲线,向学生讲解机构设计过程。引入动力学分析软件(ADAMS),采用交互式的图形环境,创建参数化的机构模型,再对模型进行运动学和动力学仿真分析。机构设计通过教师快速建模、生动的动画及分析图形的输出,使学生进一步理解机构动态参数化设计过程,认识工程新技术的应用,提高学习的兴趣,增强设计能力。

二、培养工程意识和系统观念

机械原理课程使学生开始接触专业及机械设计类问题,对培养工程意识和系统观念至关重要。

机械原理课程机构内容部分,各章是一种不同的、独立的机构。在课程中,机构是由线段和符号构成的平面图形、机构分析和设计多为数理计算,内容是孤立的、静止的。由于学生又缺乏实践知识和工程背景,学习起来感觉枯燥,机械原理课程一直以来被认为是难学的课程。机构来源于机械,因此,我们在教学中采用从机械系统入手,提取和分析常用机构,进而设计机构的教学思路。在每种机构的讲解前,先搜集并放映一些典型机构系统的动画实例,使学生先了解该种机构在机械系统中的位置和作用,进行机构分析时,单一、静止和孤立的机构变为机械系统中动态的机构,通过机械系统学习机构,了解机构的工作原理、作用,不但有助于分析理解机构,重要的是认识了系统中的机构。再进入机构设计环节时,学生容易用动态开放的思维、系统的观念进行思考,有利于培养学生机构运动方案设计能力。另外在教学中,尽可能多的引进相关的工程实例,介绍机构的应用,开阔视野。同时启发学生到生活中找机构应用实例和需要设计或改进的小课题,通过讨论课、小作业等形式,从多环节培养学生工程意识。

三、合理安排实践教学,培养工程实践能力

实践教学是培养学生工程设计能力的重要环节。机械原理课程由理论教学、实验教学和课程设计三部分构成。应注意机械原理教学中理论教学与实践教学的关系,合理安排实践教学。

实验教学是培养学生动手能力和工程实践能力的重要环节,还有助于形象思维能力的培养。以前实验课时间由实验老师安排,没有注意实验的时效性,实验应该与理论课同步进行,才能保证教学效果。例如:机构运动简图绘制是难点内容,“机构的测绘和分析实验”应尽量安排在课后尽快进行,学生是刚开始接触这门课程,及时配合实验,对教学能起到事半功倍的作用。机械原理课程设计是培养学生设计能力的重要环节,内容主要有机构运动方案的选择和设计计算,要求用解析法完成。机构运动方案设计最能体现灵活性和创新性的关键所在。过去机械原理课程设计安排在课程之后,时间较紧,学生主要时间和精力用于建模、编程等内容,一些学生对计算机编程不熟,更是草草了之。课程设计达不到培养设计和创新能力的目标。为此我们将课程设计的题目从开课就布置给学生,让学生带着问题去学,有充分的时间进行机构运动方案设计的思考,鼓励学生进行开放性思维,提出较多机构方案进行比较和选优。改革后的课程设计教学,从教和学的层面都从系统机构设计问题展开,且贯穿于整个教学过程中,有效保证了设计质量。另外,在教学过程中,鼓励学生观察实际生活和工程实践中的机构,根据教学节奏自拟课程设计题目,培养观察和发现问题的能力的同时,有效提高了学生的兴趣并激发出设计冲动和创新意识。

四、将培养创新能力贯穿教学始终

创新是设计的灵魂。在教改中将创新能力培养确定为我校机械原理课程教改的主要目标之一,着重研究创新思维方式的培养。通过分析影响大学生创新思维的教育学因素,在机械原理的教学中,将创新思维方式的培养贯穿于理论教学、实践教学整个教学环节,从教学内容、教学方法多方面改革,全方位营造创新环境,通过改变传统继承式教育模式,避免满堂灌的套路式教学,多用启发式、讨论式教学方法,激活学生的思维。将创造性思维方式贯穿于教学过程中,培养学生创新意识和发散思维能力等。运用多媒体立体化教学培养学生形象思维能力。给实践性教学环节提供足够的时间和空间,为学生营造创新环境,激发创新兴趣。鼓励学生参加机械设计竞赛,提高、彰显和检验创新能力。我校自浙江省第一届机械创新设计大赛开始参赛,且连年在大赛中获奖。近两年来,在我校学生“全国三维数字化创新设计大赛”中取得一等、二等和三等奖的好成绩。图1为2010年全国一等奖作品风火队—“大力水手”号挖掘机的虚拟样机,图2为2011年全国一等奖作品“开拓者探险车”的总体设计图。

五、小结

面向设计的机械原理的教学改革在我校已进行多年了,几年来,学生学习兴趣不断提高,学生越来越能接受新的教学模式,从学生的学习热情和考试成绩,以及连年机械设计大赛中逐年取得的好成绩,证明我校机械原理课程教学改革在培养学生的设计能力方面是有效和成功的。

参考文献:

[1]申永胜。机械原理教程[M].北京:清华大学出版社,1999.

[2]黄昌华,郭庚田,白彩勤。采用三层次培养方案进行机械原理课程教学改革[J].清华大学教学研究,1995,(01):47-49.

[3]郭卫东。机械原理课程教学方法和手段的改革与实践[J].太原理工大学学报(社会科学版),2008,(26):56-59.

机械原理课程设计 篇8

一、《机械设计》课程教学改革的意义

《机械设计》是高职机电类专业的专业基础课,对其他课程的理论教学和相关实训顺利开展有着重要的基础性支撑作用。基于工业4.0与产业升级的大环境,机电类的专业课程教学改革已经大量增加先进的自动成形设备、自动化生产线、工业机械手、多元自动化输送装置等智能制造设备内容,作为机电类的专业基础课的《机械设计》必须在课程内容、模式上有所创新,增加智能制造相关内容,并改变传统授课方式,为后续相应的课程与实训提供支撑。

智能制造所涉及的岗位技术要素和知识点在《机械设计》课程中均能找到相对应内容。机电类高职培养的是面向企业工程设计与生产一线的技术技能型人才,教学内容必须符合当前技术发展趋势,必须包含智能制造所涉及的技术要素,必须经历完整和系统性的工程设计训练才能满足智能制造工程对从业人员的要求。

二、课程现有教学内容和模式的不足

传统《机械?O计》课程在知识内容上按章节安排内容进行学习,缺少整体机构和设备的系统性。没有面向智能制造相关机构和设备进行整合知识内容与安排工程设计训练;高职机械类课程体系中一般不开设《机械原理》课程,而在实际的智能装备精密机构零部件设计中核心的设计要素往往要涉及《机械原理》中的相关内容,而目前的高职《机械设计》课程内容并没有将《机械原理》中一些必要的内容融入进来。所以使得在实际机械工程设计应用中最为重要的两块内容没有进行很好的整合,导致学生难以在实际的工程设计中得到很好的应用,整体设计水平较低,达不到智能制造设备设计要求。

通常在《机械设计》课程完成后,开展2―3周左右的《机械设计综合实训》,虽然实训内容是对《机械设计》所需内容的综合应用训练,但目前的实训主要内容仍然停留在简单传动装置的设计―圆柱齿轮减速器的设计,虽然涵盖了部分《机械设计》的内容,但其设计理念、方式、流程与智能制造装备完全不同,实训基本偏向于培养学生对机械设计流程的理解,没有面向智能制造装备机构设计开展,达不到培养技术、技能型机械设计人才的目的。

三、课堂教学改革的思路

1.面向智能制造与工程设计训练模式,重新整合《机械设计》课程内容。将智能制造设备进行教学化提炼与改造,形成适合进行工程设计训练模式的项目案例,通过案例的分析与讲授完成《机械设计》所涉及的相关内容的学习,并进行延伸扩展,在知识学习完成的基础上学生可自行进行工程设计训练。

2.设计与整合实训过程。引入工程设计训练模式,《机械设计》课程完成后,需要进行的《机械基础综合实训》整合到《机械设计》课程之中,将原来的一个减速器设计实训项目改变为多个针对智能制造设备、机构、结构的小项目,涵盖更多的课程内容知识点,将原来独立的实训融入到课程教学当中,面向智能制造设备的针对性更强,做到完成一个阶段的授课学习之后就进行各分项目的工程设计训练,边学边练。改革现有的《机械设计》课程标准,面向智能制造设备的机械设计,精细化分析解构知识要素和能力要素,将提炼整合出的项目融入到新的课程标准的内容中。并精细化到课时数,子项目数,形成新的面向智能制造,且适用于高职层次的《机械设计》课程标准。

3.改革课堂教学授课模式,引入多种方式方法完成课堂授课任务。通过信息化教学平台、课程教学微信、翻转课堂、微课、学生分组学习汇报等多种形式辅助完成课堂教学,增强授课形式的新颖性,增加互动,提高学生学习兴趣,使学生对《机械设计》课程内容与智能制造相关知识有了更好的理解和掌握。

四、课堂教学改革具体实施

机械原理课程设计 篇9

关键词:成人教育;机械原理;精品课程;课程改革

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)30-0207-03

一、简介

机械原理是以高等数学、机械制图、理论力学及普通物理等先修课程为基础,并为学习机械设计和有关机械类专业课程奠定必要基础的一门课程。通过课程的学习,学生需要掌握机构学和机械动力学的基本理论、基本知识和基本技能,并初步具有拟定机械系统方案、分析和设计机构的能力。机械原理课程理论性较强,且各章节相对较独立,内容多,因此在其教学过程中应注重贯彻少而精的原则,不强调面面俱到,知识点要浅些,宽广度需适应成人教育的特点。成人教育具有和普通高等教育不一样的特点,主要体现在个体差异大,知识结构参差不齐,整体水平不高;一般年龄偏大,工作和家庭负担重,工作忙碌,学习时间难保证;原有的知识结构不适应目前所从事的工作,需要提高自身的专业素质;随着年龄的增长,成人的理解力增强,记忆力较差,但是成人学员大多为一线工作人员,实践经验丰富,对与现场联系较密切的教学内容及实践兴趣极高。近年来入学的成人学生的年龄有不断减小的趋势,其记忆力方面较强,但在实践经验方面略有欠缺。国家提倡的精品课程建设是以一流教师队伍、一流教学内容、一流教学方法、一流教材、一流教学管理等为特点的示范性课程。成人机械原理精品课程建设的目的是针对成人教育的特点,从教学队伍建设、教学内容和课程体系改革、先进的教学方法和手段、教材建设、理论与实践结合、课程建设全面规划等方面进行努力和发展,使成人的机械原理课程教育教学在各方面符合国家示范性课程的要求。

二、课程建设方法

根据精品课程建设的要求,并结合我校自身的发展和基础条件,从以下几个角度进行了相关工作:

1.面向工程应用的课程设置。机械原理是机械类专业的一门重要的专业基础课,在整个专业培养和课程体系中具有十分突出的地位,是从基础课过渡到专业课、从理论性分析为主过渡到工程实践为主的一门中间课程。该课程是学生接触工程化的第一个实践环节,因此如何深化工程化的概念对于机械原理的教学十分重要。随着各高校的扩招,年轻教师越来越多,而且具有博硕士学位的比例越来越高。但目前的年轻教师主要是从学校到学校,缺少工程经验,工程化的师资队伍建设成为时展的需求。结合部级“河海大学-宝菱重工卓越工程实践中心”的建设,为增加年轻教师的学习经历,在学生进驻企业的同时,各指导教师全程陪同,参与企业的项目建设。建立各学习模块,为各模块配备校内导师和企业教师,企业导师负责实践教育,校内导师负责理论教育,相互学习,既提高了校内导师的实践能力,也为企业带去了较高的理论分析水平。而为了提高课堂教学时课程的工程应用比例,还借鉴了蚌埠学院的相关做法,如:(1)优先引进同时具有高学历和工程实践背景的师资人才,聘请企业内高级技术人员做校外兼职导师;(2)集合学院乃至校区的力量,积极参与常州市及周边地区的建设,增强校企联合;(3)鼓励专利、产学研结合和技术服务,而不仅仅是理论研究和科技论文。

2.课程实施条件。在课程的具体实施过程中,主要从教师队伍建设、教材规划、教学条件保障等方面进行:(1)主讲教师。从机械原理的教学人员构成来看,任课教师中有1名教授、1名副教授、3名讲师,学历均在硕士以上。年龄从35岁到50岁,结构合理,形成了一个教师梯队。课程的主讲教师在成人以及本科教育教学、教改研究等方面具有十分丰富的经验。全体任课教师定期召开教学例会、集中备课、针对教学过程中出现的问题及时处理和分析。(2)教材规划。理论课教学选用了由清华大学出版、申永胜编著的普通高等教育“十五”部级规划教材《机械原理教程》。该教材配有习题集可有效提供成人学生自主学习和研究性学习的资料。精品课程建设中,教材规划参考天水师范学院的立体化教材建设方法。立体化教材包括主教材、教师参考书、学习指导书、电子教案、CAI课件、网络课程、试题库等。该教材的建设与整个机械原理课程内容、体系的改革相结合,电子教案和课件能够及时反映教学改革的要求,网络课程建设促进教学改革的尝试,逐步提高机械原理的教学水平。(3)教学保障。成人的机械原理教育依托于本科教学环节,能够使课程教学的教学条件得到充分保障。学院经过二十多年的建设,教学设备先进,教学设施齐全。学院设有本科教学的机械基础省级实验教学示范中心、机电工程学院实验中心和河海大学常州校区工程训练中心,机械基础省级实验教学示范中心2007年立项建设,2010年顺利通过江苏省验收;专用与通用仪器和设备价值达2000余万元;学院实验室占地4000余平方米,拥有实验设备仪器1200余台套。目前实验室开设的实验课程主要包括:机构运动简图测绘;齿轮参数测量和范成实验;机构运动拼接实验;机构运动参数实验。目前实验课程主要对本科生开设,对于成人教育正逐步开展进行。(4)网络化教学。针对成人学生的上课时间较难保证、课时紧等问题,要鼓励学生能够充分利用课余时间,因此建设好机械原理课程的网络资源是十分重要的。我校机械原理的精品课程网站内容主要包括课程简介、教学管理、教师队伍介绍、教学资源等。其中教学资源主要包括助学式课件、思考题、练习题、习题答案、课程重点及难点解析等。网站中还有留言信箱,方便同学对于课程的疑问和问题能够及时和老师沟通和联系。

3.课程评价体系。课程评价围绕课程培养目标,不仅要评价学生掌握的知识与技能,而且还要评价学生课堂的表现、出勤率和学习过程。评价时以课程考试为主要的评价方式,并辅助以课堂表现和出勤率等,力求评价方式的多样化[5]。单纯的期末考试不能完全反映出一个学生对课程的掌握程度,目前各高校大多都采用多种方式如课后作业、报告、实验、小测验、考试等进行考核,表1所示为根据我校成人教育的特点采用的评分标准和比例。多样化的考核方式,使学生必须注重平时的学习积累,不能通过突击的方式完成课程考试,学生有了积极学习的压力和动力,更能均衡反映学生学习的实际水平和学习效果,符合正态分布。

4.课程改革与创新。机械原理课程具有较强的实践性和可动性的特点。即课程研究的所有问题都来源于生产和生活中实际的机构和机器,并且研究对象都是具有确定运动的机构。因此学习方法也要与之相适应,在学习过程中,尤其应注意理论知识与实践应用相结合、机构运动简图与具体实物相结合、机构的静态分析与动态分析相结合、形象思维与逻辑思维相结合。机械原理的课堂教学、教学方法与手段等方面力求创新改革,探索适合成人学生学习的课程体系和教学方式,培养学生的学习兴趣、创新思维和独立分析问题、解决问题的能力。(1)教学内容的创新。针对成人教育中学生的理论学习时间少而又急需提高应用能力的学习特点和需求,机械原理课堂教学的主要内容为:机械运动方案选型设计、机构运动分析与尺寸综合、机械动力学分析和设计。此外还要重视介绍学科发展的新动态、新方向、新内容,注重激励学生的学习欲望,调动学生的积极性,让学生了解更多更新的理论、技术与方法。实践教学方面主要包括小项目和专题、实验教学、课程设计、课外创新等。如近年来国家以及省级组织的大学生创新训练计划,在创新竞赛的过程中提高了学生的创新意识,学生得到了实践锻炼的机会、开阔了眼界。(2)教学方法的创新。机械原理教学方法配合教学内容的改革,加强与学生的互动,要将以教师为主的“灌输式”教学向以启发式、问题式、讨论式教学为主的新的教学方法转变,让学生从被动学习转变为主动学习,真正成为教学活动的主体。鼓励学生应用成熟的工程软件进行相关课程的学习。例如在很多章节中涉及到图形法可以采用AutoCAD软件来分析和设计,可以得到比手工绘图精确得多的解,又可以锻炼利用AutoCAD软件绘图的能力。如图2所示为图解法分析凸轮机构的相关参数。在解析法中可以结合matlab软件教学,既可以直接利用matlab编程的方法,具有丰富的库函数、编程简单、可视化功能强,又可以采用simulink和simMechanics进行机构的运动学和动力学分析。如图3所示,某曲柄摇杆机构中,各杆件长度分别为l1=120mm,l2=40mm,l3=70mm,l4=100mm,曲柄运动角速度250rad/s,利用simulink分析得到杆件BC和CD的角速度图形。(3)教学手段的创新。在教学手段上,着重培养学生对机械系统的整体认识,课程重点突出,难点得到有效分析,课堂教学过程吸引学生的注意力,注重学生的参与,启迪学生的思考、联想。加强学生对所学基础理论的理解。培养学生应用所学过的知识,锻炼其独立解决工程实际问题的能力。教学方法得当,充分利用多媒体教学,努力激发学生学习兴趣和提高教学效果。多媒体课件中除了课程的文字性内容外,主要包括自制的动画课件和机械相关的视频信息,如企业内各种设备、工具和零部件及加工录像等。此外,在机械原理课程中有关结构分析、运动分析、力学分析等方面的教学还应该注意多媒体和板书的综合利用。

三、总结归纳

机械原理课程在机械类成人教育的课程体系中处于承上启下的地位,因此加强成人机械原理的精品课程建设具有非常重要的意义和作用。在课程建设过程中,从面向工程化、保证课程实施、课程评价体系以及课程改革和创新等方面采取不同的措施和方法,可提高成人的教育教学质量,提高学生的学习兴趣和自主性,提高学生的实践能力和创新能力,使学生能够牢固掌握机械原理中的相关基础知识和内容,为机械类的后续课程的学习打下良好的基础。

参考文献:

[1]谢永智。成人教育《计算机图形学》课程教学改革探讨[J].高教论坛,2007,(1).

[2]Zhang H,Liao H,Liu B,Zhou J. Discussion on Education of Innovation and Practice Talents.Education and Education Management,2012,(3).

[3]李大胜,张辉,吕明,张春艳。“工程化”背景下《机械原理》实践教学体系改革的探索[J].赤峰学院学报(自然科学版),2013,(29).

[4]罗海玉,李琴兰,郑丽。机械原理课程的立体化教材建设研究[J].天水师范学院学报,2007,(27).

[5]董惠敏,钱峰,高媛,王德伦。基于网络的机械原理自主学习模式[J].实验技术与管理,2011,(28).

[6]赵世田,周海,刘道标。“机械原理”双语教学实践与探索[J].中国电力教育,2012,(31).

[7]金萌。浅谈成人教育与计算机教学[J].中国科技信息2005,(15).

[8]王俊峰,田丽萍。Matlab运动仿真在机械原理课程设计中的应用[J].机电产品开发与创新2009,(4).

[9]邹,胡爱萍,沈惠平,陈爱莲。《机械原理》教学中多种媒体的综合运用[J].无锡商业职业技术学院学报,2007,(7).

机械原理课程设计范文 篇10

关键词:机械工程;机械设计能力;培养模式;典型案例

机械制造业不仅是现代工业发展建设的发动机,更是国民经济的支柱产业。近年来随着科技的进步,“中国制造2025”正推进制造业由传统制造向现代制造与智能制造进行转型与发展。“科技强国,人才兴国”,为适应产业的飞速发展与转型的需求,社会对具有较强机械工程实践与创新能力的高素质应用型高级专业人才需求量增大。因此,在高校机械专业人才培养中,亟须强化工程实践能力与现代机械设计能力的培养[1]。为提高机械专业人才培养质量,各高校在人才培养体系、核心课程的教学内容与教学方法等方面都进行了大量的有益探索[2-3]。但目前,相关教改研究主要集中在教学内容与教学方法的改进与优化以及实践教学改革研究等方面[4],而对深度融合多课程、多环节的全过程专业能力培养的研究较少。为提高毕业生的现代机械设计能力,开展基于典型案例的多课程、多环节、深度融合的培养模式研究,符合机械专业工程教育专业认证的大潮流,具有重要的意义和推广价值。

一、现状及问题

地方院校主要为区域经济建设和社会发展服务,承担着为行业技术进步培养卓越工程人才的责任。然而,一直以来部分地方院校沿袭高水平院校机械专业人才的培养模式,未根据自身实际情况修改导致所培养的人才与社会需求错位,社会急需能胜任现代机械制造行业发展的研发、设计工作的专业技术人才。此外,地方院校学科专业硬件建设的投入较小,先进仪器设备与实训平台的台套数少,实践教学环节较为薄弱。我国已广泛开展工程教育认证工作,基于工程认证以成果为导向的教育理念,学生毕业能力是人才培养的核心任务,而现代机械设计能力是机械设计制造及其自动化毕业生的核心能力。由于机械设计类课程多、教学内容比较抽象、理论深奥且比较枯燥,学生多有畏难、厌学情绪,教师授课比较困难,导致学生机械设计知识掌握不扎实、机械设计软件应用不熟练、机械创新设计与综合设计能力较弱等现象,学生的专业能力与机械工程实际需要存在一定的脱节,不能满足机械制造业发展的人才培养需求,人才培养效果还需继续改善。本文以哈尔滨商业大学的机械专业为例,该专业已开展工程教育认证工作,根据培养方案要求毕业生须具备包括机械产品设计能力、机械零件制造能力、机电系统控制能力、特色食品包装机械研发能力的机械工程综合应用能力,其中最基本、最核心的是机械产品设计能力,专业能力形成体系如图1所示。针对培养目标,培养方案中不仅设置了“机械原理”“机械设计”“机械系统设计”等理论课程,也安排了机械设计课程设计、专业综合课程设计、专业生产实习、CAD/CAE实训及毕业设计等实践教学环节,形成了比较完整、规范的现代机械设计能力培养体系(如图2所示)。通过这些教学环节的训练,机械专业的毕业生能比较熟练地掌握现代机械设计方法及手段。但是,由于各门课程、各个实践环节的缺乏交流协商机制,都按各自的思路与模式开展教学,没有形成一个统一、有机的全过程培养体系,导致出现部分基础薄弱的学生工程软件应用不熟练、机械创新设计与综合设计能力较弱等现象,毕业生的现代机械产品设计能力还有待提高。

二、培养模式改革的具体方案与措施

在工程教育背景下,哈尔滨商业大学机械设计制造及其自动化专业优化人才培养途径,研究建立了基于典型案例的深度融合的多课程、多环节的现代机械设计能力全过程人才培养模式。

(一)完善机械设计能力全过程培养体系

为实现符合工程教育专业认证的毕业生专业能力培养要求,机械专业修订了人才培养方案和课程教学大纲,并整合、优化工程案例,通过齿轮传动及减速器设计的典型案例,将现代机械设计的能力培养贯穿课程教学、生产实习与课程设计、毕业设计等人才培养的全过程,全面夯实学生的机械设计能力,提高毕业生的工程素养与工作适应性。基于学科认知规律,从机械专业的初步认识机械→简单机械产品设计→现代机械设计方法设计→机械产品综合设计→复杂机械产品设计→复杂产业机械设计及研发→实际工程应用的人才培养规律,综合分析机械专业的师资队伍、硬件条件以及历史传承,建立机械专业基于典型案例的现代机械设计能力全过程培养体系,如图3所示。

(二)充实机械设计能力培养的教学内容

以齿轮传动及减速器设计为案例,将机械原理、机械设计、机制工艺等核心课程与课程设计、实训、生产实习、毕业设计等实践环节深度融合,经过多轮从理论到实际、从实际到理论的循环培养过程,逐步培养学生运用专业知识去分析、解决机械工程问题的能力。形成规范、完整的机械设计能力培养体系,解决了机械设计类课程追求理论体系完整、忽视工程实践的弊端。1.第三学期。“机械原理”课程教师可通过学生感兴趣的汽车及变速箱动画,使他们了解汽车变速箱的工作原理及齿轮传动原理,增加其对传动机构有感性认识,激发学生的学习热情,同时,着重讲解齿轮传动的工作原理及轮系设计,解决由于课程理论深奥且比较枯燥的难题。2.第四学期。首先,可通过“金工实习”让学生近距离观察CA6140车床主轴箱,使其对齿轮传动有更深入的认识和理解。其次,教师可通过“机械设计”课程教学,重点讲述齿轮传动设计、齿轮校核等内容。最后,通过齿轮减速器课程设计,让学生深入理解齿轮传动设计过程及设计要点,使他们初步了解机械产品设计的基本过程。3.第五学期。教师可通过“机械CAD/CAE/CAM技术”课程,让学生掌握三维设计软件Solidworks、二维平面设计软件AutoCAD的使用,建立轴、齿轮、箱体等典型零件的三维模型,了解ANSYS、COSMOS等先进机械设计软件的应用;通过机械CAD/CAE实训,建立圆柱齿轮减速器三维模型,完成齿轮减速器的装配图及典型零件图,使学生真正理解如何运用先进工具完成机械产品的设计。4.第六学期。可通过大型机械制造企业生产实习,让学生理解齿轮、齿轮轴等典型零件的加工工艺;通过“机械制造工艺学”课程,重点理解齿轮加工工艺、设计计算以及尺寸链等内容;通过齿轮加工工艺及夹具设计,使学生深入理解机械产品、机械零件的设计及加工,形成机械产品设计过程中要综合考虑机械零件加工的良好工程设计习惯。5.第七学期。通过“机械系统设计”课程教学,重点讲述有级变速传动的设计;通过车床主轴变速箱课程设计,让学生能进行复杂机械系统整体布局、传动系统设计、操纵机构设计等,形成复杂机械产品设计的初步能力。6.第八学期。通过毕业设计,让学生运用Solidworks等工程软件完成一个比较复杂的机械产品设计,形成复杂机械产品设计能力。通过6个学期全过程机械产品设计能力的培养,可使学生具备熟练运用机械专业知识和专业技能的能力,能够运用自然科学和工程科学的基本原理,去表述与分析复杂机械工程问题,提出解决方案,完成比较复杂的机械产品的设计与开发,提升专业能力和工程素养。

(三)改革教学方法,提升教学效果

为提升教学效果,教师要全过程贯彻案例式教学方法,并形成自己的课堂教学、实践教学及课外科技活动相结合的立体化教学思路。1.采用案例驱动教学方法,提高学生的工程设计能力。通过齿轮传动及减速器设计的典型案例,全过程贯彻齿轮传动及减速器的工作原理、设计理论及工程实践,逐步培养学生运用专业知识去分析、解决机械工程问题的能力,夯实学生的现代机械设计能力,提升学生的工程素养和工作适应性。2.采用系统论方法,完善机械设计能力培养体系与课程内容。采用系统论方法,将机械设计类各门课程、各个实践环节各自为政开展教学的现状,通过齿轮传动及减速器设计的案例教学,形成一个统一、有机的机械设计能力全过程培养体系,提升学生的工程素养和工作适应性。3.采用重点论方法,提升学生对机械产品设计的理解。教师要全过程地重点讲解齿轮传动及减速器的设计、加工、材料选用、总体设计以及三维建模等,通过课堂讨论及习题课,让学生举一反三,充分调动其学习积极性,促进其对课程内容的消化和理解。4.采用理论联系实际的方法,将教改、科研成果及学科前沿融入教学。教师可采用理论联系实际的方法,将教改、科研成果、学科前沿和高新技术信息有机地融入教学过程,不断补充、更新教学内容,深化学生对机械理论知识的理解和掌握,锻炼其实际动手能力,并向其传授更多、更新、更先进的知识,激发学生的兴趣。5.结合实践教学与课外科技活动方法,提升教学效果。教师可结合生产实习、课程设计与课外科技活动,通过现场实物教学法,提升学生对机械的感性认识,激发他们主动学习的积极性,提升教学效果。

三、结论

本文在对机械制造业发展现状及需求的大量调研基础上,分析地方商科院校的现实困境及现状,并以哈尔滨商业大学机械专业为例,建立了基于典型案例的现代机械设计能力的全过程培养体系。通过齿轮传动及减速器设计的典型案例,将现代机械设计能力的培养贯穿课程教学、实践教学等人才培养全过程,全面夯实机械专业毕业生的机械设计能力,提高毕业生的工程素养与工作适应性。通过对机械专业培养模式的改革,将会使培养出的机械专业人才更符合国家发展战略以及产业转型需要。通过该项目的研究,也可为其他地方院校在进行机械专业培养模式的教育改革与实践中提供有效的经验借鉴与参考。

参考文献:

[1]唐庆菊,陈少云,于凤云。以工程能力培养为导向的“专业综合实践”课程教学改革[J].黑龙江教育(理论与实践),2021(4).

[2]彭翔,李吉泉,姜少飞,等。面向工程能力培养的机械设计课程教学改革研究[J].机械设计,2018(S2).

[3]娄燕。专业认证驱动下的机械专业工程实践能力探讨[J].当代教育实践与教学研究,2019(21).

机械原理课程设计 篇11

在各大高职院校的机械类专业,机械制图作为机械类专业极其重要的一门课程,主要培养学生绘制、阅读机械图样的专业能力,是学生的必修课程之一。机械制图使用的工具主要是以下三种:圆规、直尺和铅笔。利用这些工具,就能书写工程师的语言――工程图。工程图的描绘是所有工程设计当中非常重要的一个环节,利用二维图像的描绘,将已经设计好的三维立体工程模块进行准确的描述。

随着计算机的普及应用,计算机辅助设计(CAD)开始大放异彩,在几乎是所有的制造领域,都发挥着重要的作用。在工程设计愈发复杂的今天,绘制工程图已成为一项复杂、繁琐且需要足够耐心的工作,人工方式已经很难满足商业需求。所以,在绘制工程图时,利用软件中丰富的工具,可以完成人工无法完成的部分,提高工程师制图的质量和效率。因此,实际教学中,将机械CAD教学与机械制图有机的结合顺理成章,是顺应时代的发展潮流和社会发展趋势的明智之举。

2 机械CAD和机械制图的关系

2.1 机械制图是基础支撑 虽然机械CAD在机械设计中具有人工无法媲美的强大功能,但是,究其本质,只是一款辅助设计软件。如果没有机械制图的基础知识提供支撑,缺乏机械制图所必须的基本素质,仅想利用计算机软件就完成一份优秀的设计图样,是不可能的,计算机还没有达到能替代人工思维的水平。所以,机械制图的学习是基础,只有在机械制图的课程中,借手工制图培养好学生扎实的制图知识,完全理解机械制图中所包含的原理和方法,才有可能利用计算机辅助工具,完成一份优秀的设计。

2.2 机械CAD是提高设计质量和效率的有力保障 作为一款通用图形软件,将原来的手工方式,转变为计算机方式,制图效率提高了10-20倍。在机械制图传统教学中,大量的宝贵时间被浪费在手工制图的过程中,必然会造成理论分析的缺失,就有可能导致学生难以理解机械制图当中所包含的原理和方法,绘制图像仅仅是照猫画虎。引入机械CAD制图,将原本需要制图的大量时间缩短,为老师进行理论分析和学生理解制图所包含的原理方法提供了时间保证。

3 实现机械CAD教学和机械制图一体化教学的重要性

机械制图作为机械专业非常重要的基础课程,在以往的机械制图课程中,制图原理、制图技巧往往是学生学习的重点和难点,要想熟练掌握机械制图,必须要花费大量的时间去练习。但是,随着课改的推进,机械制图课程的课时被明显压缩,学生应该掌握的知识、要熟练的技能等要求,并没有下降,反而有所提升。在这样的环境下,如何在有限的时间内,让学生完全掌握需要熟练应用的知识,非常重要。将机械CAD教学和机械制图结合后,很好的解决了学生学习时间短和需要大量时间练习的矛盾,避免了因需要大量时间练习制图而失去学习兴趣,明显提高制图效率。

4 实现机械CAD教学和机械制图的一体化教学的对策

4.1 教学内容的结合 在过去的课程教学安排中,机械CAD教学和机械制图是作为两门课程,分别进行教授。机械制图作为培养学生识图、制图能力的课程,对学生的空间想象能力有着较高要求,仅仅依靠老师在课堂中讲述,缺乏形象生动的演示,难以调动学生学习的积极性。在机械CAD的教学中,又缺乏针对性,虽然学生能完成软件功能的操作,但是却无法利用软件完成机械制图工作。所以,在教学内容上,将机械CAD教学引入机械制图当中来,把CAD当做机械制图内容中的工具来讲解。这样不仅节省了机械制图的教学时间,也给机械CAD的教学树立了目标。

4.2 课程安排的结合 在课程安排上,要将传统的机械制图课程,安排在机房,以保证机械CAD的教学环境得到满足。用电脑的显示屏、鼠标和键盘,来代替学生手中的圆规、直尺和笔。对两门课程,结合起来共同教授,彼此为依托,以机械制图为主线,以CAD教学为辅助,让学生在理解机械制图的基础上,充分使用计算机软件,不仅可以完成机械制图的任务,在这个过程中,也熟练的掌握了CAD软件的使用。把传统的机械制图课时和机械CAD教学课时融合,共同延长机械制图和机械CAD的学习时间,两门课程学习相互穿插、辅助,两门课程课时相加,可达到1+1>2的效果。

4.3 在实践中学习 学习掌握的知识,只有在实践过程中,才能得到真正的理解和升华。学校可以安排学生进入企业,或者把企业的诉求带入课程实践中,让学生用掌握的制图知识和CAD工具,完成企业任务。这样带入的实际案例,不仅使学生深刻感知企业的人才需求,更能帮助学生理解和升华机械制图和机械CAD制图的知识。

一键复制全文保存为WORD
相关文章