平行四边形的面积教学设计与评析优秀3篇

作为一名辛苦耕耘的教育工作者,时常需要准备好教学设计,借助教学设计可以让教学工作更加有效地进行。教学设计应该怎么写才好呢?这次为您整理了平行四边形的面积教学设计与评析优秀3篇,如果对您有一些参考与帮助,请分享给最好的朋友。

自主探究 篇1

1.数方格比较两个图形面积的大小。

(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。

(2)学生用数方格的方法计算两个图形的面积并填写书上80页表格。

(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。

(4)提出问题:如果平行四边形很大,用数方格的方法麻烦,能不能找到一种方法来计算平行四边形的面积?

(5)观察表格,你发现了什么?

(6)引导学生交流发现并全班反馈得出:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。

(7)提出猜想:平行四边形的面积=底×高

2.操作验证。

(1)提出要求:请小朋友利用三角尺、剪刀,动手剪一剪拼一拼,把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。

(2)学生分组操作,教师巡视指导。

(3)学生展示不同的方法把平行四边形变成长方形。

(4)利用课件演示把平行四边形变成长方形过程。

(5)观察并思考以下两个问题:

A。拼成的长方形和原来的平行四边形比较,什么变了?什么没变?

B.拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?

(6)交流反馈,引导学生得出:

A.形状变了,面积没变。

B.拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。

(7)根据长方形的面积公式得出平行四边形面积公式并用字母表示。

(8)活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。

3、教学例1。

(1)(出示例1)平行四边形的花坛的底是6 m,高是4 m。它的面积是多少?

(2)学生独立完成并反馈答案。

平行四边形的面积教学设计 篇2

教学目标

1、知识目标:通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。

2、能力目标:在数方格、剪拼图形中发展空间观念;初步感知等积转化的思想方法,提高解决问题的能力。

3、过程与方法目标:通过实践――感性认识――理性认识――实践应用的辩证唯物主义思想方法教学,培养小组合作学习、交流、评价的意识。

4、情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系,使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。

教材分析重点使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形的底和高的关系。

难点平行四边形面积公式的推导过程。

教具

1、多媒体计算机及课件;

2、每个学生3张平行四边形硬纸片及剪刀一把、尺子。

教学过程

一、质疑引新:

1、这图形你认识吗?长方形面积公式是怎样的?宽]这又是什么图形?指出平行四边形的底和高?

2、谈话引入:你想知道你所做的平行四边形面积有多大吗?

二、引导探求:

㈠提出问题:

1、用数方格法求平行四边形的面积

⑴谈话:我们以前研究长方形面积计算的时候,用到了数方格的方法,今天为了研究平行四边形面积的计算,我们也可以用数方格的方法。请同学们看屏幕(微机显示教材P69图)。

⑵数出方格图中平行四边形的面积。提问:

A、师:每个方格代表多大的面积?(电脑闪烁小方格,并在学生齐答后显示“1平方厘米”图例)

B、指名来数一数,这个长方形的面积是多少平方厘米?平行四边形的面积是多少平方厘米?

⑶若以下面的这条边作为平行四边形的底(电脑显示),那么它的底和相应的高各是多少厘米?

2、电脑显示教材P69图,数出图中长方形的长和宽各是多少厘米?并求出它的面积。

3、比较两个图形的关系(电脑同时显示图)请大家仔细观察上面二个图形,比较平行四边形的底和长方形的长,平行四边形的高和长方形的宽,大家发现了什么?再请大家看看它们的面积呢?

电脑逐步显示:平行四边形的面积=长方形的面积。

平行四边形的底=长方形的长;

平行四边形的高=长方形的宽;

引导学生猜想“平行四边形的面积与它的什么有关?”到底对不对?我们用数方格的方法算出平等四边形的面积,你认为这种方法方便吗?还有更方便的方法吗?让我们一起开动脑筋,想办法来证明它吧!

电脑展示:

(1)底、高、不变,面积不变。

(2)底、高改变,面积变化。

你们的猜想正确,平行四边形的面积大小与它的底和高有关,如果给你一个平行四边形,你能想办法算出它的面积吗?

㈡推导公式:

1、小组合作研究:

长方形的面积是长乘以宽,那么能不能想个办法将平行四边形转化成长方形,进而用公式来计算呢?下面我们来做个实验,四人小组合作请同学们拿出1个平行四边形纸片及剪刀,以学习小组合作为形式,一人动手,三人留意看,并请同学们在剪拼的过程中,思考以下二个问题:(显示)

⑴怎样剪拼才能将平行四边形转化成长方形?

⑵转化后的图形与原平行四边形有什么关系?

(要求:比一比,看一看,哪一个小组最能干,拼得又对又快?)

2、各小组实验操作,教师巡视指导。

3、各小组交流实验情况:

⑴谁愿意把你的转化方法说给大家听呢?请上台来交流!

⑵有没有不同的剪拼方法?(继续请同学演示)。

⑶电脑演示各种转化方法。

4、小组合作讨论归纳总结规律:

⑴平行四边形剪拼成长方形后,什么变了?什么没变?

⑵剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?

⑶剪样成的图形面积怎样计算?

⑷小组上台汇报,指着图形说一次得出:

因为:长方形的面积=长×宽

所以:平行四边形的面积=底×高(同位指着图形说)

7、自学字母公式:记文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作“。”,也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。

㈢巩固公式:

刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪些条件?(平行四边形的底和相对应的高)

㈣应用解决:

下面让我们用公式来解决一些实际问题。电脑显示:“一块平行四边形菜地(如下图),它的底长32.6米,高8.4米,它的面积是多少?(得数保留整平方米)

板书:32.6×8.4≈274(平方米)

答:它的面积约是274平方米。

(挑一学生的作业投影评讲)

学生分析: 篇3

学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

一键复制全文保存为WORD
相关文章