初中数学教学设计精选9篇

作为一位兢兢业业的人民教师,可能需要进行教案编写工作,教案有助于学生理解并掌握系统的知识。怎样写教案才更能起到其作用呢?读书破万卷,下笔如有神,本文是敬业的小编帮家人们收集的9篇初中数学教学设计的相关文章

初中数学教学设计 篇1

(一)提出问题,导入新课

1、解二元一次方程组

问题

母亲26岁结婚,第二年生个儿子,若干年后母亲的年龄是儿子年龄到3倍,此时母亲的年龄为几岁?

解法一:设经过x年后,母亲的年龄是儿子年龄的3倍。 由题意得

26+x=3x 解法二:设母亲的年龄为x岁。 由题意得

x=3(x-26)

(二)精选讲例,探求新知

例2、某班有45位学生,共有班费2400元钱,准备给每位学生订一份报纸。已知《作文报》的订费为60元/年,《科学报》的订费为50元/年,则订阅两种报纸各多少人?

巩固练习 小明和小李两人进行投篮比赛,规则:小明投3分球,小李投2分球,两人共投中20次,经计算两人得分相等,问小李和小明各投中几个球。

(三)变式训练,激活学生思维

问题

1、小明和小李两人进行投篮比赛,小明投3分球,小李投2分球,两人共投中100次,小明投中率为40%,小明投中率为40%,经计算两人得分相等,问小李和小明各投中几个球。 问题

2、已知某电脑公司有A型、B型、C型3种型号的电脑,其价格分别为A型6000元/台、B型4000元/台、C型2500元/台,我校计划将100500元钱全部用于从该公司购进其中两种不同型号电脑共36台,请你设计出几种不同的购买方案供学校采用。小红的方案:�

(四)课堂练习,巩固新知

1、A、B两地相距36千米,甲从A地出发步行到B地,乙从B地出发步行到A地,两人同时出发,4小时候相遇。若6小时后,甲所余路程为乙所余路程的2倍,求甲乙两人的速度。

2、某班借来一批图书,分借给同学阅览,如果每人借6本,那么会有一个同学没书可借,如果每人借5本,那么还剩5本书没人借,问该班有多少人,有多少书。

(五)拓展

1、变题训练问题2中,若学校要购买A、B、C3种型号的电脑,有如何安排?

2、某中学新建一栋4层的教学大楼,每层楼有8间教室,进、出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同。安全检查中,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生。

⑴问平均每分钟一道正门和一道侧门各可以通过多少名学生。

⑵检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离。假设这栋大楼每间教师最多有45名学生,问建造的这4道门是否符合安全规定。

初中数学教案 篇2

今天小编为大家精心整理了一篇有关初中数学教案之公式的相关内容,以供大家阅读!

教学设计示例一——公式

教学目标

1.了解公式的意义,使学生能用公式解决简单的实际问题;

2.初步培养学生观察、分析及概括的能力;

3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

教学建议

一、教学重点、难点

重点:通过具体例子了解公式、应用公式.

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

二、重点、难点分析

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

三、知识结构

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

四、教法建议

1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

教学设计示例二——公式

一、教学目标

(一)知识教学点

1.使学生能利用公式解决简单的实际问题.

2.使学生理解公式与代数式的关系.

(二)能力训练点

1.利用数学公式解决实际问题的能力.

2.利用已知的公式推导新公式的能力.

(三)德育渗透点

数学来源于生产实践,又反过来服务于生产实践.

(四)美育渗透点

数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.

二、学法引导

1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点

2.学生学法:观察分析推导计算

三、重点、难点、疑点及解决办法

1.重点:利用旧公式推导出新的图形的计算公式.

2.难点:同重点.

3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.

四、课时安排

1课时

五、教具学具准备

投影仪,自制胶片。

六、师生互动活动设计

教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.

七、教学步骤

(一)创设情景,复习引入

师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.

在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题.

板书:公式

师:小学里学过哪些面积公式?

板书:S=ah

(出示投影1)。解释三角形,梯形面积公式

【教法说明】让学生感知用割补法求图形的面积。

(二)探索求知,讲授新课

师:下面利用面积公式进行有关计算

(出示投影2)

例1如图是一个梯形,下底(米),上底,高,利用梯形面积公式求这个梯形的面积S。

师生共同分析:1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?

2.题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作等)

学生口述解题过程,教师予以指正并指出,强调解题的规范性.

【教法说明】1.通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.

(出示投影3)

例2如图是一个环形,外圆半径,内圆半径求这个环形的面积

学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.

评讲时注意1.如果有学生作了简便计算,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算.

2.本题实际上是由圆的面积公式推导出环形面积公式.

3.进一步强调解题的规范性

教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.

测试反馈,巩固练习

(出示投影4)

1.计算底,高的三角形面积

2.已知长方形的长是宽的1.6倍,如果用a表示宽,那么这个长方形的周长是多少?当时,求t

3.已知圆的半径,,求圆的周长C和面积S

4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。

(1)求A地到B地所用的时间公式。

(2)若千米/时,千米/时,求从A地到B地所用的时间。

学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演.

【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展.

师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式.

八、随堂练习

(一)填空

1.圆的半径为R,它的面积________,周长_____________

2.平行四边形的底边长是,高是,它的面积_____________;如果,,那么_________

3.圆锥的底面半径为,高是,那么它的体积__________如果,,那么_________

(二)一种塑料三角板形状,尺寸如图,它的厚度是,求它的体积V,如果,,,V是多少?

九、布置作业

(一)必做题课本第xx页x、x、x第xx页x组x

(二)选做题课本第xx页xx组x

初中数学教学设计 篇3

一、教材的地位与作用

《二元一次方程》是九年义务教育人教版教材七年级下册第四章《二元一次方程组》的第一节。在此之前学生已经学习了一元一次方程,这为本节的学习起了铺垫的作用。本节内容是二元一次方程的起始部分,因此,在本章的教学中,起着承上启下的地位。

二、教学目标

(一)知识与技能:

1.了解二元一次方程概念;

2.了解二元一次方程的解的概念和解的不唯一性;

3.会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

(二)数学思考:

体会学习二元一次方程的必要性,学会独立思考,体会数学的转化思想和主元思想。

(三)问题解决:

初步学会利用二元一次方程来解决实际问题,感受二元一次方程解的不唯一性。获得求二元一次方程解的思路方法。

(四)情感态度:

培养学生发现意识和能力,使其具有强烈的好奇心和求知欲。

三、教学重点与难点

教学重点:二元一次方程及其解的概念。

教学难点:二元一次方程的概念里“含未知数的项的次数”的理解;把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

四、教法与学法分析

教法:情境教学法、比较教学法、阅读教学法。

学法:阅读、比较、探究的学习方式。

五、教学过程

1.创设情境,引入新课

从学生熟悉的姚明受伤事件引入。

师:火箭队最近取得了20连胜,姚明参加了前面的12场比赛,是球队的顶梁柱。

(1)连胜的第12场,火箭对公牛,在这场比赛中,姚明得了12分,其中罚球得了2分,你知道姚明投中了几个两分球?(本场比赛姚明没投中三分球)师:能用方程解决吗?列出来的方程是什么方程?

(2)连胜的第1场,火箭对勇士,在这场比赛中,姚明得了36分,你知道姚明投中了几个两分球,罚进了几个球吗?(罚进1球得1分,本场比赛姚明没投中三分球)师:这个问题能用一元一次方程解决吗?,你能列出方程吗?

设姚明投进了x个两分球,罚进了y个球,可列出方程。

(3)在雄鹿队与火箭队的比赛中易建联全场总共得了19分,其中罚球得了3分。你知道他分别投进几个两分球、几个三分球吗?

设易建联投进了x个两分球,y个三分球,可列出方程。

师:对于所列出来的三个方程,后面两个你觉的是一元一次方程吗?那这两个方程有什么相同点吗?你能给它们命一个名称吗?

从而揭示课题。

(设计意图:第一个问题主要是让学生体会一元一次方程是解决实际问题的数学模型,从而回顾一元一次方程的概念;第二、三问题设置的主要目的是让学生体会到当实际问题不能用一元一次方程来解决的时候,我们可以试着列出二元一次方程,渗透方程模型的通用性。另外,数学来源于生活,又应用于生活,通过创设轻松的。问题情境,点燃学习新知识的“导火索”,引起学生的学习兴趣,以“我要学”的主人翁姿态投入学习而且“会学”“乐学”。)

2.探索交流,汲取新知

概念思辨,归纳二元一次方程的特征

师:那到底什么叫二元一次方程?(学生思考后回答)

师:翻开书本,请同学们把这个概念划起来,想一想,你觉得和我们自己归纳出来的概念有什么区别吗?(同学们思考后回答)

师:根据概念,你觉得二元一次方程应具备哪几个特征?

活动:你自己构造一个二元一次方程。

快速判断:下列式子中哪些是二元一次方程?

①x2+y=0②y=2x+

4③2x+1=2x ④ab+b=4

(设计意图:这一环节是本课设计的重� )

二元一次方程解的概念

师:前面列的两个方程2x+y=36,2x+3y=16真的是二元一次方程吗?通过方程2x+3y=16,你知道易建联可能投中几个两分球,几个三分球吗?

师:你是怎么考虑的?(让学生说说他是如何得到x和y的值的,怎么证明自己的这对未知数的取值是对的)利用一个学生合理的解释,引导学生类比一元一次方程的解的概念,让学生归纳出二元一次方程的解的概念及其记法。(学生看书本上的记法)

使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。(设计意图:通过引导学生自主取值,猜x和y的值,从而更深刻的体会二元一次方程解的本质:使方程左右两边相等的一对未知数的取值。引导学生看书本,目的是让学生在记法上体会“一对未知数的取值”的真正含义。)

二元一次方程解的不唯一性

对于2x+3y=16,你觉得这个方程还有其它的解吗?你能试着写几个吗?师:这些解你们是如何算出来的?

(设计意图:设计此环节,目的有三个:首先,是让学生学会如何检验一对未知数的取值是二元一次方程的解;其次是让学生体会到二元一次方程的解的不唯一性;最后让学生感受如何得到一个正确的解:只要取定一个未知数的取值,就可以代入方程算出另一个未知数的值,这也就是求二元一次方程的解的方法。)如何去求二元一次方程的解

例:已知方程3x+2y=10,

(1)当x=2时,求所对应的y的值;

(2)取一个你自己喜欢的数作为x的值,求所对应的y的值;

(3)用含x的代数式表示y;

(4)用含y的代数式表示x;

(5)当x=负2,0时,所对应的y的值是多少?

(6)写出方程3x+2y=10的三个解.

(设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程,实质是解一个关于y的一元一次方程,渗透数学的主元思想。以此突破本节课的难点。)

初中数学教学设计 篇4

教学目标

(1)认知目标

理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。

(2)技能目标

经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。

(3)情感态度与价值观

教学中让学生在主动探究,合作交流中渗透类比转化的思想,使学生在学知识的同时感受探索的乐趣和成功的体验。

教学重难点

重点:

运用分式的乘除法法则进行运算。

难点:

分子、分母为多项式的分式乘除运算。

教学过程

(一)提出问题,引入课题

俗话说:“好的开端是成功的一半”同样,好的引入能激发学生兴趣和求知欲。因此我用实际出发提出现实生活中的问题:

问题1:求容积的高是,(引出分式乘法的学习需要)。

问题2:求大拖拉机的工作效率是小拖拉机的工作效率的倍,(引出分式除法的学习需要)。

从实际出发,引出分式的乘除的实在存在意义,让学生感知学习分式的乘法和除法的实际需要,从而激发学生兴趣和求知欲。

(二)类比联想,探究新知

从学生熟悉的分数的乘除法出发,引发学生的学习兴趣。

解后总结概括:

(1)式是什么运算?依据是什么?

(2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导,学生应该能说出依据的是:分数的乘法和除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导学生类比分数的乘除法则,猜想出分式的乘除法则。

(分式的乘除法法则)

乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。

除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(三)例题分析,应用新知

师生活动:教师参与并指导,学生独立思考,并尝试完成例题。

P11的例1,在例题分析过程中,为了突出重点,应多次回顾分式的乘除法法则,使学生耳熟能详。P11例2是分子、分母为多单项式的分式乘除法则的运用,为了突破本节课的难点我采取板演的形式,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法。

(四)练习巩固,培养能力

P13练习第2题的(1)、(3)、(4)与第3题的(2)。

师生活动:教师出示问题,学生独立思考解答,并让学生板演或投影展示学生的解题过程。

通过这一环节,主要是为了通过课堂跟踪反馈,达到巩固提高的目的,进一步熟练解题的思路,也遵循了巩固与发展相结合的原则。让学生板演,一是为了暴露问题,二是为了规范解题格式和结果。

(五)课堂小结,回扣目标

引导学生自主进行课堂小结:

1、本节课我们学习了哪些知识?

2、在知识应用过程中需要注意什么?

3、你有什么收获呢?

师生活动:学生反思,提出疑问,集体交流。

(六)布置作业

教科书习题6、2第1、2(必做)练习册P(选做),我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。

板书设计

在本节课中我将采用提纲式的板书设计,因为提纲式—条理清楚、从属关系分明,给人以清晰完整的印象,便于学生对教材内容和知识体系的理解和记忆。

初中数学教学设计 篇5

20xx年寒假期间,我读《初中数学创新教学设计》一书对我很有帮助,感想很多。

教学设计作为教师进行教学的主要工作之一,对教学起着先导作用,它往往决定着教学工作的方向;同时教学设计的技能作为教师专业发展的重要内容,已成为教师从师任教必备的基本功。所以教师了解初中数学教学设计的内容很有必要。新理念下的初中数学教学设计的内容可以包括:

(1) 教学目标。

在新理念下,教学目标一般包括过程性目标和结果性目标两个方面,也可以进一步细分为知识技能,数学思考,解决问题,情感态度等多方面。

(2)任务分析

进行任务分析的重点在于关注几个要点:

一是关注学生的起点;二是关注学生主要的认知障碍和可能的认知途径;三是分析教学内容的重点、难点和关键;四是研究达成目标的主要途径和方法。

在这里,有两个问题十分重要:第一,要关注学生的经验基础,第二,要正确认识教材。对于前者,意味着不仅要考虑学科自身的特点,更应遵循学生学科学习的心理规律;要把学生的个人知识、直接经验和现实世界作为初中数学教学的重要资源。对于后者,意味着要“用教材教,而不是教教材”。创造性的使用教材是本次新课程对我们提出的新要求,教材是极其宏观性的一个蓝本,覆盖着非常广阔的时空,主要对教师教什么、学生学什么起到指向作用。但教材仅仅是教师组织数学课堂教学活动的素材,使学生进行数学学习的平台。新理念下的教材给教师留下了比较大的创造空间,进行任务分析,就必须改变“以教材为本处理教材”的现象,根据学生实际、教学实际和当地实际,模拟教材,重组教材,编制教材,消减技巧性训练,增加其探索性、思考性和现实性的成分,为实施开放式、活动式的探究、合作、参与等新型学习方式创造条件。事实上,对初中生来说,喜好数学问题,对有关的数学活动充满好奇心,这是进一步学习数学的首要前提和发展动力。

(3)教学思路。

主要考虑具体的教学过程,包括创设的情景、活动的线索、学生可能提出的问题,可能的情况下必须附设计说明。

(4)教学反思

主要针对如下一些问题开展反思:

是否达到预期目标?如果没有达到,分析其原因,并提供改进的方案。有哪些突发的灵感,印象最深的讨论或学生独特的想法?哪些地方与教学设计的不一样,学生提出了哪些没有想到的问题?为什么会提出这些问题?

了解了教学设计的内�

今天,李老师带着我们去看舞剧《羚羚的故事》。到那里以后,先是主持人讲话,之后是大队辅导员李老师讲话,她带我们一起回顾了羚羚的故事的精彩镜头,看完了我觉得他们太辛苦了!

第一幕讲的是在美丽的可可西里,有很多很多的羚羊在玩,羚羚和妹妹跟妈妈在说话,妈妈说:“你们看,蓝蓝的天空多漂亮啊!”羚羚说:“是啊,你看那朵云彩多像我啊!”妈妈说:“这美丽的一切是很多很多妈妈的牺牲换来的!”之后,一位来西藏旅游的少年来了,她和小羚羊玩耍,对小羚羊特别好。

第二幕讲的是羚羚听见“砰”的一声,她问妈妈是怎么回事,妈妈说:“这是枪声,咱们赶快跑吧!”羚羚说:“妹妹呢?”她们到处找,突然发现妹妹已经被击中了!羊妈妈刚想去救她,但是来不及了,偷猎者来了!妹妹被偷猎者带走了,羚羚非常伤心!

第三幕讲的是小羚羊们又累又饿,走不动了。羊妈妈说:“孩子,坚持一下吧!”羚羚问:“妈妈,我们要去哪儿?我们为什么要离开可可西里?”妈妈说:“我们要去一个没有人类的地� ”羚羚问:“妈妈,您不是说人类是我们的好朋友么?我们为什么要远离他们?”羊妈妈说:“因为现在来可可西里的人是魔鬼,他们要杀掉我们,用我们的毛皮做衣服,我们要离开这里!”小羚羊们走着走着,大雪来了,大雨来了,大风来了,羚羚实在受不了了。这时,她们的面前出现了一片沼泽地,小羚羊们很着急,怎么过去呢?羊妈妈说:“我们已经没有选择了!”说着,所有的羊妈妈都跳了下去,她们背着小羚羊过去了,但是羊妈妈们却被埋在了沼泽地里。羚羚和小羚羊们大喊着:“妈妈!妈妈!”这时少年来了,她正在寻找小羚羊,小羚羊看到她,跑了过去。少年说:“羚羚,是你吗?你身上怎么这么多伤?你的妈妈呢?”羚羚伤心地说:“妈妈死了,妹妹也死了!”

第四幕讲的是少年带着她的朋友们来了,他们都是动物保护者,他们同小动物们一起打败了偷猎者。小羚羊们又有了新的家园。这时候羚羚也当妈妈了,她们过上了幸福的生活!

看完这个故事,我想说:“可恶的偷猎者,不许再杀害小动物了!”因为中国的珍稀动物越来越少,比如大熊猫、扬子鳄、白鳍豚,我必须要保护小动物,我们每个人都要保护小动物,它们是我们人类的好朋友!让我们每个人都做环保的小卫士!

研究教学方法的组合运用这一课题,对提高思想政治课教学质量有重要的意义。教学方法是多种多样的,每一种方法都有自己的特点和适用范围。师生在教学中可以也应该自主选择不同的教和学的方法,努力创造新的教和学的方法。教学有法,但无定法,贵在得法,教师教学时必须注意方法选择。我在教学中常用的方法有:演讲法、发现教学法与探究教学法 、训练与实践式教学方法、复习测验式教学法、小组讨论法等。其中用得最多的是演讲法,其优势在于:

(1)演讲法可以说明一些原则,可以叙述一些事实,解决高中政治教学当中某些内容抽象学生难以理解的问题和概念。在新课程标准下,高中政治教学目的在于向学生传授基本的理论知识从而让学生具备正确是世界观和方法论,从而具有在现实生活当中解决问题的能力。

虽然高中政治是一门与时事关系非常密切的学科,但是它同样具有抽象性和蒙蔽性,这些仅仅靠学生的自发理解是解决不了的,这时候,演讲法就具备了相当的优势。通过演讲法,教师可以将政治学科当中难以理解的问题结合时事和例子深入浅出的讲述清楚,插入有趣的例子和时事,这样就可以将时效性和趣味性结合起来,既解决了教学重点和难点,同时也可以提高学生对政治这门学科的兴趣,让他们明白,这门学科对他们而言具有相当的实用性,而又不显得课堂空荡荡。教师就可以通过“演讲法”,把教学内容和例子相结合,就可以解决这些对学生而言非常抽象的概念和理念,毕竟,高中的学生的理解能力在挖掘发展当中。

(2)可以节省教学的时间,在高中政治教学的过程当中,有时候教学任务繁重在一节课当中,这个时候,“单向式”的演讲法就可以节省时间,能够顺利完成当节教学任务;

正如之前所说的,任何事物都有其两面性,演讲法有其优点,自然也有它的缺陷。它主要是在于「单向教学」的问题,教师不易掌握学生对教材的接受情况与了解的程度,同时也容易发生灌输式教学的危险,如果教师对课堂出现的问题处理能力不强或者语言表达能力不够,那么在使用演讲法时就很容易陷入让学生觉得枯燥乏味的情绪当中,因为毕竟来说高中政治这门学科对于学生来说已经有“枯燥无味”和“学了也没什么用”的这种先入为主的观念了,所以这时候对于高中的政治老师的课堂处理能力和语言表达能力就提出更高的要求对于使用演讲法来说。因此,当高中政治教师在使用演讲法之时,应当配合其它一些可以使学生参与的方法来使用,譬如:讨论式、问题式、游戏式等等,尽量让学生参与到课堂当中,同时通过语言的渲染力提高学生上课的情绪。

比如在讲述到“公民的政治权利”这个概念时,就可以提出当前社会当中易让人困惑的问题让学生参与讨论,通过这样的设问讨论,学生的情绪就非常高涨,纷纷发表自己的看法,最后再通过演讲法由教师进行总结,这样既可以加深对问题的理解,也可以调节课堂气氛,增强师生之间的互动性,这样就可以很好的弥补了演讲法本身的缺陷。教学的重点并不完全在于将一大堆的知识或材料倾倒给学生。学生积极、热切地参与在教与学的过程中是非常重要的。让学生多有运用手及脑的机会是有益处的。对高中这些年纪稍大一点的学生而言,他们自主性很强,有自己独立的思想,愈给他们参与的机会,就学习得愈好。

在教学目标的落实方面需要改进的主要是加强与学生的沟通,因为不管多好的方法,只有能被学生有效分享,为学生的学习提高助力,帮助学生理解教学内容的教学方法才是真正有效的方法。

初中数学教学设计 篇6

一、学情分析

八年级学生具有强烈的好胜心和求知欲,抽象思维趋于成熟,形象直观思维能力较强,具有一定的独立思考、实践操作、合作交流、归纳概括等能力,能进行简单的推理

二、教材分析

这节课是人教版八年级第十八章第一节的内容,教学内容是勾股定理公式的推导、证明及其简单的应用。本节课是在学生已经掌握了直角三角形有关性质的基础上进行学习的,勾股定理是几何中最重要的定理之一,它揭示的是直角三角形中三条边之间的数量关系,将数与形密切联系起� 它有着丰富的历史背景,在数学的发展中起着重要的作用,在现实生活中也有着广泛的应用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

三、教学目标设计

知识与技能

探索勾股定理的内容并证明,能够运用勾股定理进行简单计算和运用

过程与方法

(1)通过观察分析,大胆猜想,探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

(2)在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学过程,并体会数形结合和从特殊到一般的思想方法。

情感态度与价值

(1)在探索勾股定理的过程中,培养学生的合作交流意识和探索精神,增进数学学习的信心,感受数学之美,探究之趣。

(2)利用远程教育资源介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

四、教学重点难点

教学重点

探索和证明勾股定理 ·教学难点

用拼图的方法证明勾股定理

五、教学方法

(学法)“引导探索法”

(自主探究,合作学习,采用小组合作的方法。

六、教具准备

课件、三角板

七、教学过程设计

教学环节1

教学过程:创设情境探索新知 教师活动:出示第24届国际数学家大会的会徽的图案向学生提问

(1) 你见过这个图案吗?

(2) 你听说过“勾股定理”吗?

学生活动:学生思考回答

设计意图:目的在于从现实生活中提出“赵爽弦图”,进一步激发学生积极主动地投入到探索活动中,同时为探索勾股定理提供背景材料。

教学环节2 教学过程:实验操作获取新知归纳验证完善新知

教师活动:出示课件,引导学生探索

学生活动:猜想实验合作交流画图测量拼图验证

设计意图:渗透从特殊到一般的数学思想。为学生提供参与数学活动的时间和空间,发挥学生的主体作用;让学生自己动手拼出赵爽弦图,培养他们学习数学的成就感。通过拼图活动,使学生对定理的理解更加深刻,体会数学中的数形结合思想,调动学生思维的积极性,激发学生探求新知的欲望。给学生充分的时间与空间讨论、交流,鼓励学生敢于发表自己的见解,感受合作的重要性。

教学环节3 教学过程:解决问题应用新知

教师活动:出示例题和练习

学生活动:交流合作,解决问题

设计意图:通过运用勾股定理对实际问题的解释和应用,培养学生从身边的事物中抽象出几何模型的能力,使学生更加深刻地认识数学的本质:数学来源于生活,并能服务于生活,顺利解决如何将实际问题转化为求直角三角形边长的问题,培养学生的数学应用意识。

教学环节4 教学内容:课堂小结巩固新知布置作业

教师活动:引导学生小结

学生活动:讨论交流、自由发言

设计意图:既引导学生从面积的角度理解勾股定理,又从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦。

通过布置课外作业,给学生留有继续学习的空间和兴趣,及时获知学生对本节课知识的掌握情况,适当的调整教学进度和教学方法,并对学习有困难的学生给与指导。

八、板书设计

勾股定理:如果直角三角形的两直角边分别为a和b,斜边为c,那么 a2+b2=c2。

九、习题拓展

如图,将长为10米的梯子AC斜靠在墙上,BC长为6米。

(1)求梯子上端A到墙的底端B的距离AB。

(2)若梯子下部C向后移动2米到C1点,那么梯子上部A向下移动了多少米?

十、作业设计

1。收集有关勾股定理的证明方法, 下节课展示、交流。

2。做一棵奇妙的勾股树(选做)

初中数学教学教案 篇7

设计思想:

这堂课为章节复习课,教师可以先从总体知识结构入手,引导学生逐步回顾所学的知识,要知道本章主要需要掌握的是如何利用二次函数及其表示方法、二次函数的图像及性质解决实际问题,即二次函数的应用。

目标:

1.知识与技能

初步认识二次函数;

掌握二次函数的表达式,体会二次函数的意义;

会用数表、图像和表达式三种表示方法来表示二次函数,并会相互转化;

会画二次函数,能利用二次函数求一元二次方程的近似解;

利用二次函数的图像和性质解决相关实际问题,灵活应用二次函数。

2.过程与方法

通过利用二次函数的图像解决问题,体会数形结合的数学方法;

在学习探索的过程中逐步体会和认识二次函数。

3.情感、态度与价值观

体会从特殊函数到一般函数的过渡,注意找函数之间的联系和区别;

树立主动参与积极探索尝试、猜想和发现的精神;

注意运用数形结合的思想,改变过去只利用数式,而忽略图形的思想。

教学重点:二次函数的图像和性质。

教学难点:二次函数y= 的图像及性质;二次函数的应用。

教学方法:讨论法、引导式。

教学安排:1课时。

教学媒体:幻灯片。

教学过程:

Ⅰ.知识复习

师:这堂课是这章的总结课,下面我们来看这章整体知识框架图:(幻灯片)

观看这章的知识整体框架,思考下面的问题:

1.你能用二次函数的知识解决哪些问题?

2.日常生活中,你在什么地方见到过二次函数的图像抛物线的样子?

3.你知道二次函数与一元二次方程的关系吗?你能解决什么问题?

同学们,想想你们学习本章的收获是——。

同学们相互讨论,然后师生互动共同探讨上面的问题。

Ⅱ.典型例题

例1:某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图2-1,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?

要求:(1)请提供四条信息;(2)不必求函数的解析式。

解:(1)2月份每千克销售价是3.5元;(2)2月份每千克销售价是0.5元;(3)1月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9与、4月与10月、3月与11月,2月与12月的销售价相同。

(注:此题答案不唯一,以上答案仅供参考,若有其他答案,只要是根据图象得出的信息,并且叙述正确即可)

讨论:

生:对于这类问题,我常感到无从下手。

师:要重点看一下横轴与纵轴分别是哪一个变量,然后再看一下它的数据分别是多少。

例2:(北京石景山)已知:等边 中, 是关于 的方程 的两个实数根,若 分别是 上的点,且 ,设 求 关于 的函数关系式,并求出 的最小值。

解: 是等边三角形, 。

不合题意,舍去, 即

又 ,

又 ∽

设 则

当 ,即 为 的重点时, 有最小值6。

讨论:

生:这个题目包含的内容较多,我感到难度很大。

师:本题涉及到等边三角形的性质,解直角三角形。二次函数的有关内容,是一道综合性题目。

生:对于这样的题目如何入手呢?

师:要认真分析题目,明确每一条件的用处。

例3:某校初三年级的一场篮球比赛中,如图2-2,队员甲正在投篮,已知球出手时离地面高 ,与篮球中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m。

(1)建立如图2-3的平面直角坐标系,问此球能否准确投中?

(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?

解:(1)

根据题意:球出手点、最高点和蓝圈的坐标分别为 。

设二次函数的解析式

代入 两点坐标为

将 点坐标代入解析式;左=右;所以一定能投中。

(2)将 代入解析式: 盖帽能获得成功。

讨论:

生:此球能否准确投中,与二次函数的知识有何联系,我不大清楚。

师:篮球运行的轨迹为抛物线,蓝圈可以看成一个点,所以此球能否准确投中的问题,实际上就是看一下该点在不在抛物线上即可。

例4:如图2-4,一位篮球运动员跳起投篮,球沿抛物线 运行,然后准确落入篮框内,已知篮框的中心离地面的距离为3.05米。

(1)球在空中运行的最大高度为多少米?

(2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少?

解:(1) 抛物线 的顶点坐标为(0,3.5)。

∴球在空中运行的最大高度为3.5米。

(2)在 中,当 时,

又 。

当 时, 又

故运动员距离篮框中心水平距离为 米。

讨论:

生:我对运动员距离篮框中心水平距离有点迷惑。

师:运动员距离篮框中心水平距离,就是过蓝框向地面做垂线,垂足与人的站立点的距离。

例5:已知抛物线 。

(1)证明抛物线顶点一定在直线 上。

(2)若抛物线与 轴交于 两点,当 ,且 时,求抛物线的解析式。

(3)若(2)中所求抛物线顶点为 ,与 轴交点在原点上方,抛物线的对称轴与 轴脚于点 ,直线 与 轴交于点 ,点 为抛物线对称轴上一动点,过点 作 ⊥ ,垂足 在线段 上,试问:是否存在点 ,使 若存在,求出点 的坐标;若不存在,请说明理由。

解:(1) ,

∴顶点坐标为( )∴顶点在直线 上

(2)∵抛物线与 轴交于 两点,∴ 。

即 ,解得 。

∵ 或 当 时, (与 矛盾,舍去), 。

当 时, 或 。

(3)∵抛物线与 轴交点在原点的上方,∴

∵直线 与 轴交于点 ∴设 ,则

解得 。

当 时,

当 时,

∴ 或

讨论:

生:抛物线顶点在直线 上如何证明?

师:抛物线的顶点坐标可以求出吧?

生:只要用公式即可。

师:将抛物线的顶点坐标代入直线的解析式,如果适合直线的解析式,则点在直线 上;否则,点不在直线 上。

Ⅲ.课堂小结

我们这堂课主要需要掌握的是如何利用二次函数及其表示方法、二次函数的图像及性质解决实际问题,即二次函数的应用。

板书设计:

小结与复习

一、知识回顾 例2 例3

二、典型例题 例4 例5

初中数学优秀教学设计 篇8

教学目标:

1、进一步理解函数的概念,能从简单的实际事例中,抽象出函数关系,列出函数解析式;

2、使学生分清常量与变量,并能确定自变量的取值范围。

3、会求函数值,并体会自变量与函数值间的对应关系。

4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量的取值范围的求法。

5、通过函数的教学使学生体会到事物是相互联系的。是有规律地运动变化着的。

教学重点:了解函数的意义,会求自变量的取值范围及求函数值。

教学难点:函数概念的抽象性。

教学过程:

(一)引入新课:

上一节课我们讲了函数的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数。

生活中有很多实例反映了函数关系,你能举出一个,并指出式中的自变量与函数吗?

1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系。

2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系。

解:1、y=30n

y是函数,n是自变量

2、n是函数,a是自变量。

(二)讲授新课

刚才所举例子中的函数,都是利用数学式子即解析式表示的。这种用数学式子表示函数时,要考虑自变量的取值必须使解析式有意义。如第一题中的学生数n必须是正整数。

例1、求下列函数中自变量x的取值范围。

(1)(2)

(3)(4)

(5)(6)

分析:在(1)、(2)中,x取任意实数,与都有意义。

(3)小题的是一个分式,分式成立的条件是分母不为0.这道题的分母是,因此要求。

同理(4)小题的也是分式,分式成立的条件是分母不为0,这道题的分母是,因此要求且。

第(5)小题,是二次根式,二次根式成立的条件是被开方数大于、等于零。的被开方数是。

同理,第(6)小题也是二次根式,是被开方数,小结:从上面的例题中可以看出函数的解析式是整数时,自变量可取全体实数;函数的解析式是分式时,自变量的取值应使分母不为零;函数的解析式是二次根式时,自变量的取值应使被开方数大于、等于零。

注意:有些同学没有真正理解解析式是分式时,自变量的取值应使分母不为零,片面地认为,凡是分母,只要即可。教师可将解题步骤设计得细致一些。先提问本题的分母是什么?然后再要求分式的分母不为零。求出使函数成立的自变量的取值范围。二次根式的问题也与次类似。

但象第(4)小题,有些同学会犯这样的错误,将答案写成或。在解一元二次方程时,方程的两根用“或者”联接,在这里就直接拿过来用。限于初中学生的接受能力,教师可联系日常生活讲清“且”与“或”。说明这里与是并且的关系。即2与-1这两个值x都不能取。

例2、自行车保管站在某个星期日保管的自行车共有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管费是每次一辆0.3元。

(1)若设一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;

(2)若估计前来停放的3500辆次自行车中,变速车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围。

解:(1)

(x是正整数,

(2)若变速车的辆次不小于25%,但不大于40%,则收入在1225元至1330元之间

总结:对于反映实际问题的函数关系,应使得实际问题有意义。这样,就要求联系实际,具体问题具体分析。

对于函数,当自变量时,相应的函数y的值是。60叫做这个函数当时的函数值。

例3、求下列函数当时的函数值:

(1)————(2)—————

(3)————(4)——————

注:本例既锻炼了学生的计算能力,又创设了情境,让学生体会对于x的每一个值,y都有唯一确定的值与之对应。以此加深对函数的理解。

(二)小结:

这节课,我们进一步地研究了有关函数的概念。在研究函数关系时首先要考虑自变量的取值范围。因此,要求大家能掌握解析式含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并能求出其相应的函数值。另外,对于反映实际问题的函数关系,要具体问题具体分析。

作业:习题13.2A组2、3、5

今天的内容就介绍到这里了。

初中数学设计教案 篇9

提公因式法(二)

总体说明

本节是因式分解的第2小节,占两个课时,这是第二课时,它主要让学生经历提取公因式从简单到复杂的过程,进一步培养学生的观察能力,体会数学的类比推理能力,让学生进一步了解分解因式与整式的乘法运算之间的互逆关系.

一、学生知识状况分析

学生的技能基础:上一节课,学生学习了提取单项式公因式的基本方法,这为今天的深入学习提供了必要的基础.

学生活动经验基础:学生对于本节课采用的观察、对比、讨论等方法非常熟悉,他们有较好的活动经验.

二、教学 任务分析

学生在初步感知提取公 因式的魅力之后,并对数学的逆向思维能力和类比思想有了简单的认识,本课时让学生体会如何将这些简单的知识和能力进一步升华,使学生逐步从提取的单项式公因式过渡到提取的多项式公因式,因此,本课时的教学目标是:

知识与技能:

(1)使学生经历从简单到复杂的螺旋式上升的认识过程.

(2)会用提取公因式法进行因式分解.

数学能力:

(1)培养学生的直 觉思维,渗透化归的思想方法,培养学生的观察能力.

(2)从提取的公因式是一个单项式过渡到提取的公因式是多项式,进一步发展学生的类比思想.

情感与态度:

通过观察能合理地进行分解因式的推导,并能清晰地阐述自己的观点.

三、教学过程分 析

本节课设计了七个教学环节:练一练——想一想——做一做——试一试——议一议——反馈练习——学生反思.

第一环节 练一练

活动内容:把下列各式因式分解:

(1)am+an (2)a2b–5ab

(3)m2n+mn2–mn (4)–2x2y+4xy2–2xy

活动目的:回顾上一节课提取公因式的基本方法与步骤,为学生能从容地把提取的公因式从单项式过渡到多项式提供必要的基础.

注意事项:切忌采用死记硬背的方法让学生背诵提取公因式的基本方法与步骤,最好用例题的形式让学生回忆起提取公因式的方法与步骤,让学生真正理解是第一位的.

第二环节 想一想

活动内容:因式分解:a(x–3)+2 b(x–3)

活动目的:引导学生通过类比将提取单项式公因式的方法与步骤推广应用于提取的多项式公因式.

由于题中很显明地表明 ,多项式中的两项都存在着(x–3),通过观察,学生较容易找到公因式是(x–3),并能顺利地进行因式分解.

第三环节 做一做

活动内容:在下列各式等号右边的括号前插入“+”或“–”号,使等式成立:

(1)2–a= (a–2)

(2)y–x= (x–y)

(3)b+a= (a+b)

(4)(b–a)2= (a–b)2

(5)–m–n= (m+n)

(6)–s2+t2= (s2–t2)

活动目的:培养学生的观察能力,为解决学生在因式分解中感到比较棘手的符号问题提供知识准备.

注意事项:(1)首先注意分清前后两个多项式的底数部分是相等关系还是互为相反数的关系;

(2)当前后两个多项式的底数相等时,则只要在第二个式子前添上“+”;

(3)当前后两个多项式的底数部分是互为相反 数时,如果指数是奇数,则在 第二个式子前添上“–”;如果指数是偶数,则在第二个式子前添上“+”.

第四环节 试一试

活动内容:

将下列各式因式分解:

(1)a(x–y)+b(y–x) (2)3(m–n)3–6(n–m)2

活动目的:进一步引导学生采用类比的方法由提取的公因式是单项式类比出提取的公因式是多项式的方法与步骤.

(1)观察多项式中括号内不同符号的多项式部分,并把它们转换成符号相同的多项式;

(2)再把相同的多项式作为公因式提取出来.

第五环节 反馈练习

活动内容:

1、 填一填:

(1)3+a= (a+3)

(2)1–x= (x–1)

(3)(m–n)2= (n–m)2

(4)–m2+2n2= (m2–2n2)

2、把下 列各式因式分解:

(1)x(a+b)+y(a+b) (2)3 a(x–y)–(x–y)

(3)6(p+q)2–12(q+p) (4)a(m–2)+b(2–m)

(5)2(y–x)2+3(x–y) (6)mn(m–n)–m(n–m)2

活动目的:通过学生的反馈练习,使教师能全面了解学生对符号的转换的理解是否到位,提取公因式的。方法与步骤是否掌握,以便教师能及时地进行查缺补漏.

注意事项:由于新教材删除了添括号一节的教学,学生对于第1题第(4)小题的解答有一定的困难,因而,需要认真比较这两个多项式符号上的异同,确定它们是互为相反数还是相等关系.

第六环节 议一议

活动内容:把(a+b-c)(a-b+c)+(b-a+c)(b-a-c)分解因式.

活动目的:通过学生的讨论,当提取的公因式由两项过渡到三项时,应该采用何种对策,从而进一步提高学生的观察能力与思维能力.

注意事项:通过讨论,学生逐步意识到如果采用提取公因式的方法,必须先把所有括号内的多项式中字母a前面的符号都化为正号,再进行观察比较可以找出公因式(a-b+c).

第七环节 学生反思

活动内容:从今天的课程中,你学到了哪些知识? 掌握了哪些方法?

活动目的:通过学生的回顾与反思,强化学生对如果提取的公因式是多项式应该采取的方法,进一步清楚地了解提公因式法与单项式乘多项式的互逆关系,加深对类比数学思想的理解.

注意事项:学生经历了一个从简单到复杂、提取的公因式从单项式——两项式——三项式的螺旋式上升的认识过程,对确定公 因式的方法及提公因式法的步骤有了进一步的理解,更清楚地了解提公因式法与单项式乘多项式的互逆关系,了解类比等数学思想方法.

巩固练习:课本第52页习题2.3第1,2题.

思考题:课本第53页习题2.3第3题(给学有余力的同学做).

四、教学反思

对学生数学能力及数学思想方法的培养在初中数学教材中尽管没有专门章节进行训练,但始终渗透在整个初中数学的教学过程中.由于一些数学问题的解决思路常常是相通的,类比思想可以教会学生由此及彼,灵活应用所学知识,它是初中数学一个重要的数学思想.

运用类比的数学方法,在新概念提出、新知识点的讲授过程中,可以使学生易于理解和掌握.如学生在接受提取公因式法时,由整式的 乘法的逆运算到提取公因式的概念,由提取的公因式是单项式到提取的公因式是多项式时的分解方法,都是利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解,没有斧凿的痕迹.

教学中那种只重视讲授表层知识,而不注重渗透数学思想、方法的教学,是不完备的教学,它不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高;反之,如果单纯强调数学思想和方法,而忽略表层知识的教学,就会使教学流于形式,成为无源之水,无本之木,学生也难以领略深层知识的真谛.因此数学思想的教学应与整个表层知识的讲授融为一体.

一键复制全文保存为WORD
相关文章