《比的应用》教学设计(优秀10篇)

作为一名老师,时常会需要准备好教案,教案有利于教学水平的提高,有助于教研活动的开展。我们应该怎么写教案呢?

《比的应用》教学设计 1

教学目标

1.知道求几个相同加数和的乘法应用题的结构,初步掌握求相同加数和的乘法应用题的分析思路和解答方法,能正确解答这种类型的应用题.

2.通过乘法应用题的分析解答,培养学生认真审题、动脑分析、比较区别等能力.并使学生们学会简单地分析乘法应用题中的数量关系.

3.在授课过程中,教育学生们养成认真审题、正确解题、仔细检查的习惯.

教学重点

使学生理解求相同加数和的应用题的结构和数量关系.

教学难点

使学生真正掌握此类应用题的。结构.

教学过程

复习导入

1.口算.

2×3= 2×5= 4×2= 5×1=

5×3= 4×3= 5×5= 1×4=

2.列式计算.

(1)3个4相加是多少?

(2)5个2相加是多少?

3.师:大家已经学习了1~5的乘法口诀,学会了计算相应的式子题和文字叙述题.今天,我们要一起来研究一些生活中的问题,看谁能够应用前面所学的知识来解决这些问题.

4.教师板书课题:应用题

新授

1.出示例8(教师板书)

同学们浇树,每个人浇4棵,3个人一共浇多少棵?

2.分析解答例8

(1)读题,找出题目中的已知条件、要求的问题各是什么?用小圆片摆一摆,表示出题目中的意思.

学生可以答出:每个人浇4棵,有了3个人,要求一共浇了多少棵.(一个学生说,另一个学生在黑板上板贴小圆片.)

(2)师:看图思考,要求一共浇了多少棵树应该怎么想?(学生回答:每个人浇4棵,也就是1个4棵,有3个人浇树,就是浇了3个4棵.要求一共浇了多少棵,也就是求3个4是多少.)

(3)问:要求3个4棵是多少,应该用什么方法解答?该怎样列式?说一说为什么要这样列式?

学生边回答教师边板书:4×3=12(棵)

口答:一共浇了12棵.

3.进一步理解例8算式的意义.

师问:谁来说一说,算式中的每个数分别表示什么意思?

(算式中的4表示每个人浇了4棵树,也就是一份是4,算式中的3表示有3个人再浇树,也就是有相同的3份,算式中的12表示3个人一共浇了12棵树,也就是3个4是12.)

4.讲解例9

(1)出示例9(教师板书例9)

小明买了3个扣子,每个5角钱,一共用了多少钱?

(2)师:读题,已知条件是什么?要求的问题是什么?

教师根据学生的叙述板贴:

(3)师:看图思考,要求一共多少分应该怎样想?用什么方法解答?怎样列式?说说为什么? (分小组讨论)

(4)汇报解答方法.(小组同伴分工完成下面的任务:一人负责口头列式,一人负责板书列式,一人负责说为什么这样列式.)

(5)再次说明列式中每个数表示的意义.(算式里的5表示每个扣子5角,3表示买3个扣子,一共是3个5角,要求3个5角是多少应该用乘法计算)

巩固练习

教师要求:

(1)在规定的时间里,根据个人的不同情况,能完成几道题就完成几道题.

(2)如果在规定时间里,完成了所有的题目后,可以思考以下问题:

这几道题有什么共同的特点?(都是用乘法解答的;这几道题都是求几个几是多少.)

这几道题还可以用什么方法解答?

如果每一道题都能用两种方法解答,你更喜欢哪一种方法,为什么?

归纳质疑

师:通过这节课的学习,大家有什么收获?

1、乘法算式可以用乘法口诀来迅速的计算.

2、求几个几用乘法计算.

3、求几个几还可以用加法来计算,但是用乘法计算起来比用加法计算更简便.

4、我们已经学习了“求几个几” 的文字叙述题和应用题.其实把文字叙述题加上不同的事情就是不同的应用题.

布置作业(略)

板书设计

六年级数学《比的应用》教案 2

学材分析

教学重点:

掌握求圆面积的三种不同情况。

教学难点:

正确地进行简单的有关圆的组合图形的面积。

学情分析

简单的面积计算基本会,但联系实际解决问题的能力还不够强。

学习目标

1.进一步掌握圆面积的计算公式,并能正确地计算圆面积。

2.了解求圆环面积的方法,能计算简单的有关圆的'组合图形的面积。

导学策略

导练法、迁移法、例证法

教学准备

投影仪、自制投影片、圆规

教师活动

学生活动

一。引入

1.提问:要求圆的面积,必须知道什么条件?如果已知圆的直径、周长,能求出这个圆的面积吗?那么怎样求半径?根据学生的回答板书:r=、r=。

2.面积呢?[板书:S=πr2=π()2=π()2]

3.揭示课题。

二。展开

1.教学补充例1,投影出示

先请学生分析题意,并问:已知什么?要有用哪个面积公式?然后根据学生的回答列式解答。最后。

2.尝试

试一试。指名板演并说说是怎样算的?

三。巩固

四。

五。作业

学生回答问题。

巩固练习

教学反思

解题思路学生基本能掌握但还须练习。

《比的应用》教学设计 3

【教材分析】

《比的应用》是新世纪小学数学六年级上册的内容,是在学生理解了比的意义、比的化简、比与分数的联系、以及掌握用分数乘、除法解决简单问题的基础上,把比的知识应用于解决相关的实际问题的一个课例。比的应用又称按比例分配,按比例分配有按正比例分配和反比例分配两种,由于按反比例分配的实际应用并不广泛,而且可以转化为按正比例分配来解答,因此教材只教学按正比例分配。按比分配是“平均分”问题的发展,平均分是按比分配的特例。研究比的应用,也为以后学习 “比例”、“比例尺”的知识奠定基础。

教材有两部分内容:分一分和算一算。分一分:创设一个给两个班的小朋友分橘子的情境,鼓励学生通过实际操作,在交流不同分法的过程中体会到1:1分配的不合理性,产生按比分配的需要,同时体会按比分配在生活当中的实际应用;算一算:在有了实际操作的基础上,解决把140个橘子按3:2分给两个班,引导学生自主探索出不同的解决问题的策略,鼓励学生运用合理的解题策略解决实际问题。

【学生分析】

学生在二年级上册学习了除法的意义,了解了“平均分”,即按1:1分,学生在五年级上册学过分数的意义、分数与除法的关系,本单元学习了比的意义和比的化简。由于比与除法、分数有着密切的联系,所以,比的很多基础知识与除法、分数的相关知识具有明显的、可供利用的内在联系,这些对于学生学习比的应用奠定了良好的知识基础。

比的知识在生活中有着很广泛的应用,因此,学生也有一定的经验基础。因此,教学这部分内容时,应当充分利用原有的学习基础,引导学生联系相关的已学知识,进行类比和推理,尽可能让学生自主学习,通过自己的思考,推出新结论,解决新问题。

【教学目标】

1、能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的实际意义;

2、让学生通过观察、操作,经历与他人交流各自解题策略的过程,体验策略的多样性,并选择合适的方法;

3、使学生在探索未知、寻求成果的过程中品味学习的乐趣,并养成积极、主动的探究精神。

【教具准备】

课前准备:学生查找有关事物各组成部分比的资料,课前让学生熟悉用量杯量取溶液的方法。

课上准备:有关课件、黄、蓝色颜料、量杯等。

【教学重点】理解按比分配的实际意义,并能运用比的意义解决按照一定的比进行分配的实际问题。

【教学难点】理解按比分配的实际意义,沟通比与分数之间的联系。

教学设计

一、情境导入

情境一:师:作为一个大连人,你对自己的家乡熟悉吗?大连给你留下最深的印象是什么?我今天特地给同学们带来几幅大连的风光图,咱们一起去看看。(课件演示)

看过之后,你对大连又有什么感受?如果把这些美丽的景色画下来?那主色调应该是什么色?(板书:绿)

现在我们就来调配绿色,为大连画一幅美丽的图画。谁知道绿色是怎么配出来的?(板书:黄+蓝——绿)

【策略说明:优美的风景与和谐的音乐会把学生带入了一个轻松的世界,会使数学学习活动在一种轻松愉悦的氛围中展开。这种直观的图片不仅会激发学生对家乡的热爱之情,更会自然地引入到“绿色是怎么调配出来的”这一主题。】

情境二:同学们,你们在美术课上学过三原色,三原色中有绿色吗?绿色是怎么调配出来?(板书:黄+蓝——绿)

【策略说明:根据武秀华老师的建议“尽量简约,尽量直奔主题,不要做过多的渲染”,开门见山,直奔主题。】

二、实验操作

1、动手操作,调配绿色

师:今天,咱们就用这两种颜色调配出绿色。(每组准备了蓝色和黄色颜料,一个小量杯,一个大量杯,大量杯上贴上组号)

要求:以小组为单位进行调配;各小组在调配之前先商量好每种颜色各用多少ml,用小量杯量取黄色与蓝色颜料,记录下数据之后倒入大量杯并搅拌。组内先进行分工,然后再动手操作,看哪个小组的动作最快。

(学生动手操作,老师进行指导。)

配好之后,小组长把调好的绿色放在前面一字排开,并将数据写在黑板上统计表中。

【策略说明:数学内容的呈现应该是现实的、生活化的,尤其是贴近学生的生活实际,使学生体会数学与生活的联系,体会数学的应用价值。因此,教师要联系学生生活,就地取材,将贴近学生生活的题材充实到教学中去,从而丰富学生的学习材料。调配绿色是现实而有趣的学习活动,也是学生喜闻乐见的,学生是乐于参与的。第一次的配色活动没有给学生规定统一的数据,目的是让学生在自由活动的过程去观察和发现不同的结果,从而得出结论。】

2、观察发现,得出结论

(1)观察。师:结合这些数据,再观察这些绿色,你发现了什么?(学生会发现,同样是用黄色与蓝色配,调出来的绿色却不一样)

师:为什么每组都用黄色和蓝色的颜料配绿色,调出来的绿色却不一样呢?结合数据自己先独立思考,然后把你的想法在小组内交流一下。

学生调配的绿色可能会出现如下情况:

① 所有的小组所用的数据都不一样,则所配出来的绿色各不相同。学生可能会说所取的黄与蓝的量不同,所以颜色不同。师:“还有不同的想法吗?’’如果没有,再出示黄与蓝体积比为3:2的大小两杯绿色,量不同,但颜色却相同,以此引发学生思考。

② 有两组或两组以上的数据完全相同,则这几组配出来的绿色完全一样。这种情况也分为两种,一种是每组所取的黄色与蓝色同样多,如20ml的黄色和20ml的蓝色,即黄色与蓝色的比为1:1,还有一种是每组取得黄色是相同的,蓝色也是相同的,如每组都取20ml和黄色和30ml和蓝色。教师可以引导学生思考:为什么这几组能配出来相同的绿色呢?

③ 有两组或两组以上的数据不同,但配出来的绿色完全一样,即每组所取黄色与蓝色的比相同。教师可以引导学生思考:为什么这几组能配出来相同的绿色呢?

(2)得出结论。师:用什么办法使各组能配出非常接近甚至是一样的绿色呢?

根据以上的数据,学生很有可能回答:每个组用的蓝色和黄色的量同样多就可以调配出完全一样的绿色,但如用此方法,则只能调配出一种绿色来,答案有局限性;学生也可能回答:每个组用的黄色一样多,用的蓝色也一样多,如每组都用10g黄色和30g蓝色,但用此方法,每组必须用同样多的量,如果有的组根据需要想多配点,怎么办?答案也有局限性;学生可能会想到,每组所用的量可以不相等,但只要所取的黄色与蓝色的体积比是一定的,如每组的黄色与蓝色的比都是 1:3,就可以调配出完全一样的绿色来。

(3)将统计表中各组所用蓝色与黄色的最简体积比写出来,引导学生再结合杯中的绿色观察,看所得结论是否正确。

师:其实刚才同学们说的用黄色与蓝色同样多也就是黄色与蓝色的体积比为1:1。

【策略说明:这一过程,必须结合课堂上出现的情况进行教学,学生调配出来的绿色不可能是完全一样的,这一矛盾会极大的刺激学生各种感官,引出学生的探究欲望,并得出“只有各组所用黄色与蓝色的体积比相同,各组才能配出完全一样的绿色来”这一结论。学习的目的性加强了,孩子的学习兴趣被激发出来,由被动接受知识到主动去探究知识,对按比分配的实际意义有了深切的感悟。】

3、再次调配黄色与蓝色的比为3:2的绿色。

(1)动手操作。师:我们需要调配出这种绿色(拿出事先调好的绿色),黄与蓝的比是3:2(板书),从3:2中你能得到什么数学信息?

学生可能的回答:在这瓶颜料中,黄色占其中3份,蓝色占其中2份;黄比蓝多1份,蓝比黄少1份;黄占绿的3/5,蓝占绿的2/5;黄占蓝的3/2,蓝占黄的2/3;黄比蓝1/2,蓝比黄少1/3等等。

【策略说明:主要目的复习旧知,沟通比与分数的关� 】

师:现在我们再来配一次绿色,所需要的黄色与蓝色的比为3:2,怎么配?

(2)小组进行动手操作,并记录分配的过程。反馈不同方法。全班观察杯中的绿色是否一样。

【策略说明:在量取的过程中,学生将体会到黄色占了3份,蓝色占了2份,这为后面解决问题奠定了基础;在观察记录的过程中,学生会发现不管黄色与蓝色的量是多少,黄色与蓝色的体积比都是3:2,不仅可以巩固比的化简内容,还会使学生体会到黄色颜料扩大到原来的几倍,蓝色颜料也要扩大为原来的几倍,为学生今后学习正比例积累了经验。】

三、动笔计算

1、出示问题:我配的绿色是120ml,黄色与蓝色的体积比为3:2,算一算我用的黄、蓝色各是多少ml?请一学生重复问题,教师在黑板上出示习题:用黄色和蓝色颜料调配出120ml的绿色,黄色与蓝色的体积比是3:2,黄色与蓝色各需多少ml?

2、学生独立试做,并交流不同的算法。学生可能出现的算法:

方法1:3+2=5 120×3/5=72ml 120×2/5=48ml

师:2/5和3/5各表示什么?说给同桌听一听。

方法2:3+2=5 120÷5×3=72ml 120÷5×2=48ml

师:谁能说说他是怎么想的?

方法3:解:设一份量为xml。

3x+2x=120

5x=120

x=24

3x=24×3=72

2x=24×2=48

方法4:3+2=5 120÷5/2=48ml 120÷5/3=72ml

3、比较几种方法之间的异同。师:同学们能用不同的方法解决这一问题,非常聪明,让我们再来看这两种方法(方法1和方法2),它们有什么联系?(把 120ml平均分成5份,取3份,实际上就是求120的3/5是多少)以前我们没学分数乘法时,同学们习惯用整数的方法做,现在根据分数与除法的关系,这样的题咱们就可以用分数的方法来解决。用分数方法解决这类题的关键是什么?(根据比找准谁占谁的几分之几)

4、如果我取60ml的黄色倒在杯子里,该往里倒多少ml的蓝色,才能配成黄与蓝比是3:2的绿色呢?请用分数的方法解决这个问题。

【策略说明:我认为,通过计算解决按比分配的问题是学生应该掌握的,这一环节的设置主要是要让学生在解决问题的'过程中体会同一问题可以从不同角度去思考,得到不同的解决策略,这有利于学生思维的广度发展。其次,强化了用分数乘除法解题,因为用分数的方法有利于加强知识间的联系,使孩子的思维不仅仅局限于整数乘除法范畴,又上升了一个新的高度。再次书中的习题都是给出总量求部分量的题,而最后一题是已知部分量根据比求另一个部分量,因为这种问题在实际生活中很常见,虽然有一定难度,但由于数量简单,因此学生并不难解决】

三、小结

像这样,把一个数量按照一定的比来进行分配,在生活中会常常遇到(板书:比的应用)。以前我们常说的平均分,实际上就是按照1:1的比进行分配的。课前,老师让同学们调查了一些事物各组成部分的比,现在就把你搜集到的资料在小组内跟同伴们交流交流。(汇报:谁能说给大家听一听)

【策略说明:此环节第一个目的是让学生进一步体会按比分配在生活中的实际意义,另一个目的是还可以利用学生搜集的资料,改编成练习题,使学真实地感到数学与生活的联系。同时,学生搜集到的资料能够被老师所用,对学生来说也会感到很自豪,对学生的激励作用不言而喻。教师必须提前掌握学生搜集的资料,也可以为学生提供一些资料。】

四、巩固应用

1、(资料)学生营养午餐中菜的供给量,应包括瓜果蔬菜类、大豆及其制品类、鱼肉禽蛋类等三类食物,这三类食物所占比分别为13:2:5左右为适宜。

师:一顿饭一个孩子大约需要100g菜,这100g菜中各类食物应该是多少克呢?你能用分数的方法解决这个问题吗?(做完同学在小组长的带领下,组内互相检查,并交流各自的做法。)教师再次提问:“� 如果营养搭配不当,很可能出现这种情况。(出示:大头娃娃图)

老师看到同学们搜集到了这样一条信息:人们经过测量和统计,发现12周岁的儿童,头部与头部以下的高度比一般是2:13。和同桌说说从这个比中你还能知道哪些信息。

咱们来验证一下这条信息是否准确。请一名学生到讲台前,先估计一下她的头部大约有多长?(实际测量)请同学们根据头部与头部以下的高度比是2:13来算算她大约有多高。

(反馈:拿学生的本在投影上展示,同时由学生讲述各种方法。)

你们都知道自己的身高吧?有没有兴趣算一算自己头部的长度?(算完之后,同组内成员可以互相量一量,验证一下算得对不对。)

【策略说明:巩固应用部分的两个练习的设计,充分体现了“学生活中的数学、学有用的数学”这一理念。生活中应用按比分配的例子很多,孩子搜集到的有关资料都是可利用的资源,直接用孩子的资料编题,寻找解决问题的策略,可以让孩子进一步感受到这样的知识在生活中应用十分广泛,体会到学习数学的价值;其次,这些内容都是学生身边的事,和他们的生活息息相关,同时又是学生感兴趣的,学生在学习时不仅不会感到枯燥,同时他们用今天学过的知识解决了身边的数学问题,会有一种成就感与满足感,这样“身临其境”地学数学,学生不会有一种突冗的陌生感,反之具备了一种似曾相识的接纳心理。】

四、总结。

1、刚才我们根据2:13这个比解决了几个问题?这两个问题有什么不同?不管是给出部分量,根据比求总量,还是给出总量,根据比求部分量,都属于比的应用的问题。解决这类问题可以采取什么策略?

2、你今天有什么收获?生活中按比分配的问题还有很多,希望同学们能用今天学过的知识解决更多生活中的问题。

《比的应用》教学设计 4

一、教学目标

(一)知识与技能

理解求一个数的几分之几可以用整数除法和乘法的知识来解决。

(二)过程与方法

通过分一分、拿一拿,理解情境中的数量关系,探求解决求一个数的几分之几的方法。

(三)情感态度与价值观

感悟数形结合的思想,初步了解分数的在实际生活中的应用和价值。

二、教学重难点

教学重点:掌握实际问题中求一个数的几分之几的方法。

教学难点:利用图形、语言、算式三种表征的转化来解决有关分数的实际问题。

三、教学准备

课件等。

四、教学过程

(一)复习导入,揭示课题

1.复习导入。

学生拿出准备好的正方形纸,折出它的,并用阴影部分表示出来。

全班展示、交流不同的折法。

出示作业纸上的。苹果图:

要求学生将6个苹果平均分成3份,写出一份占苹果总数的几分之几,两份占苹果总数的几分之几,并将苹果总数的涂成红色,苹果总数涂成绿色。

2.揭示课题。

(1)这节课我们将继续学习应用分数解决生活中的一些实际问题。

(2)板书课题。

【设计意图】通过复习“1”是一个物体和一些物体时如何用分数表示整体与部分的关系,加深了对分数意义的理解,为学习新知作好准备。

(二)尝试探索,学习新知

1.阅读与理解。

(1)课件出示例2,学生自由读题,理解题意。

有12名学生在踢毽子,其中是女生,是男生。男女生各有多少人?

(2)交流:说一说从题目中,你知道了什么?

(3)你能用画示意图的方式表示出“其中是女生,是男生”吗?

(4)展示学生画的示意图,并进行对比和交流。

(5)请学生修改或完善自己画的图。

2.分析与解答。

(1)借助示意图,讨论解决问题的方案。

①引导学生读图思考:因为是女生,要求女生人数就要把12平均分成三份,求出一份是多少,并要求学生以同样的思路去求男生的人数。

②组织学生合作探究求男生人数的其他方法,并让学生选取自己认为简便的方法。

(2)学生独立列式解答。

3.回顾与反思。

(1)说一说怎样检验答案是否正确。

预设:

方法1:将解答的结果和画出的示意图一一对应。

方法2:女生的人数和男生的人数相加,4+8=12,解答正确。

……

(2)回顾解决问题的过程。

先让学生回顾与总结解决问题的过程,讨论后师生共同小结。

(3)汇报交流后,让学生书写答案,完善解题步骤。

【设计意图】在创设现实情境后,引导学生联系分数的意义,通过自己的实际操作和观察,画出示意图,理解情境中的数量关系,探究解决问题的方法。

(三)课堂练习,巩固新知

1.完成练习二十二第5题。

2.完成练习二十二第6题。

3.完成练习二十二第9题。

借助操作和直观图进一步巩固分数的意义。

【设计意图】练习的设计主要是让学生应用分数的含义解决问题,通过提供直观图,方便学生在操作的基础上,形成解题思路。

(四)全课总结,升华认识

1.通过这节课的学习,你有哪些收获?

2.你还有什么疑惑的地方?

《比的应用》教学设计 5

设计说明

本课时是在学生学习了比与分数的联系及掌握了简单的分数乘、除法应用题的数量关系的基础上进行教学的。它是“平均分”问题的发展,也是今后学习比例、比例尺等知识的基础。本课时在教学设计上有如下几个特点:

1、巧妙铺垫。

在解决按比分配的问题时,一般是先把几个数的比转化成几个数分别占总数的几分之几,再根据分数乘法的意义求出这几个数。所以在复习导入阶段,巧妙设题,引导学生把几个数的比转化成各部分占总数的几分之几,使新知的导入水到渠成。

2、合作交流。

在新知的探究阶段,先结合例题引导学生弄清题意,再引导学生联系已有的知识尝试不同的解法,最后给出按比分配的意义,并引导学生总结出按比分配问题的不同解法,使学过的各知识间的联系得到加强。

3、应用体验。

在巩固练习阶段,通过引导学生自主解决相关问题,使学生在应用体验中进一步理解比和分数的关系。掌握先把比化成分数,再用分数乘法来解答的方法。

课前准备

教师准备

PPT课件学情检测卡

教学过程

⊙复习导入

1、列式并解答。

(1)200kg的是多少千克?200×=50(kg)

(2)某班有男生18人,女生14人,男生和女生人数的比是多少?(18∶14=9∶7)

(3)学校体育组买来了三种球,其中篮球5个,足球4个,排球8个。

①买来的篮球、足球和排球的比是多少?(5∶4∶8)

②篮球的个数占三种球总数的几分之几?

③足球的个数占三种球总数的几分之几?

④排球的个数占三种球总数的几分之几?

⑤如果不知道买来的球的总数,只知道买来的篮球、足球和排球的个数比,你能求出这三种球的个数各占球总数的几分之几吗?(引导学生根据份数思考问题)

2、引入新课。

比的应用十分广泛,这节课我们就来学习比在生活中的应用。(板书课题)

设计意图:跳出学生原有的知识结构,把连比转化成总数的几分之几。分散解决问题的难点,激发学生探究新知的欲望。

⊙探究新知

1、教学教材54页例2。

(1)课件出示教材54页例2:这是某种清洁剂浓缩液的稀释瓶,瓶子上标明的。比表示浓缩液和水的体积之比。按照这些比,可以配制出不同浓度的稀释液。如果按1∶4的比配制了一瓶500mL的稀释液,其中浓缩液和水的体积分别是多少?

(2)阅读与理解。

①题目中要配制什么?(配制500mL的稀释液)

②是按什么进行配制的?(浓缩液和水的体积按1∶4的比进行配制)

③“浓缩液和水的体积比是1∶4”是什么意思?(就是说在500mL的稀释液中,浓缩液的体积占1份,水的体积占4份,一共是5份,浓缩液的体积占稀释液体积的五分之一,水的体积占稀释液体积的五分之四)

(3)分析与解答。

①讨论:你能求出浓缩液和水的体积各是多少毫升吗?(引导学生小组讨论解法)

②交流汇报。(结合学生回答,板书解法)

思路一先把比化成分数,再用分数乘法来解答。

稀释液平均分成的份数:1+4=5(份)

浓缩液的体积:500×=100(mL)

水的体积:500×=400(mL)

《比的应用》教学设计 6

教学内容:

人教版小学六年级数学第三单元第三节

教材分析:

《比的应用》是人教版小学数学六年级第十一册第三单元49页的内容。这部分内容是在学生学习了比与分数的联系,已掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关实际问题的一个课例,掌握了《比的应用》的解题方法,不仅能有效地解决实际生活、现实工作中把一个数量按照一定的比进行分配的问题,也为以后学习“比例”奠定了基础。

学情分析:

学生在学习了比的意义,比的基本性质,分数的意义等知识后,能将知识融会贯通,能将平均分与不平均分份数的知识联系和应用起来,使学生完全能找到按比例分配的方法。教师只起到启发,点拨和深化引导的作用。

教学目标

1、运用比的意义解决按照一定的比进行分配的实际问题;

2、在探索学习的过程中使学生掌握按比例分配问题的特征,能运用按比例分配的知识解决生活中的实际问题。

教学重点和难点:

能运用比的意义解决按一定比例进行分配的实际问题。

教学过程

一、复习旧知 情景导入

(出示课件)

六年级共有38人,其中,男,生和女生的`人数比是7:12,男,生是女生的人数的,女生是男生的人数,男生是全班人数的,女生是全班人数的xxx。

【设计意图】一条简单的现实生活信息,不但使学生体会到数学与生活的联系,激发了学生的学习兴趣,而且培养了学生分析问题、解决问题的能力。为学习新知做铺垫

2、同学们请看大屏幕:这里有哪些数学信息?请你读一读。(课件图片出示)

(1)地球上的淡水含量与地球上水总量的比为3:100。

(2)安利洗涤剂与水的正常比是1:8。

(3)我们喝的鲜橙多中橙汁与水的比是1:9。

(5) 妈妈做米饭时米与水的比是1:3。

(5)一种咖啡奶,咖啡和奶的比为2:9

3、生活中平均分配的问题:

学校把种植42棵小树苗的任务分配给六年级人数相等的两个班,怎样分配才合理?

4、李明与黄华合办股份制食品有限公司,李明出资20万元,黄华出资30万元,两年后盈利150万元,怎样分配利润才合理?

师板书:按比例分配

【设计意图】学生能从三个例题中体会平均分配和按比例分配的实际意义。留下悬念,激发学生的学习兴趣。

二、合作学习 自主探索

(一)理解比例分配的意义

把一个数量按照一定的比例来分配。这种分配方法通常叫做按比例分配。

(二)学习例2:(出示例2):

某种清洁剂是浓缩液和水按1:4的体积比配置的。现有一瓶500毫升的这种清洁剂,其中浓缩液和水的体积分别是多少?

1、 指名读题、理解题意

2、 学生尝试:请同学在练习本上尝试解答一下,再在小组内进行交流

3、生汇报:不同做法的两名同学到前面板演,并要求板演的学生说出这样解答的道理

解法1:总份数 1+4=5 解法2 :总份数 1+4=5 每份是500÷5=100(毫升) 浓缩液有 500×1/5=100(毫升)

浓缩液有100×1=100(毫升) 水 有 500×4/5=400(毫升)水有 100×4=400(毫升)

答:浓缩液有100毫升,水有400毫升。

4、 提问:这两名学生解答的是否正确,要求学生说出每步求的是什么

5、比一比:比较一下这两种解法有什么不同,与我们学过的哪些知识有关(可在小组内交流)

学生汇报总结:

方法1是按平均分的份数进行计算的:先算出每份的体积,再分别算出浓缩液和水的体积。

方法2是按分数的意义进行计算的:先找出各部分数占总数的几分之几,再根据分数乘法的意义,分别算出浓缩液和水的体积。

6、这道题做得对不对呢?我们怎么检验?

提问后老师总结:把计算出来的浓缩液的体积加上水的体积是否等于500;也可以把计算结果去比,看是否是1:4。

强调:检验是我们解决问题的重要环节,他能告诉我们自己的解答是否正确,能帮助我们养成对自己做的每一件事都认真负责的学习态度。

(三)老师总结并强调计算方法:首先看清题里的条件给的是哪几个量的比再看题中给的量是否是这几个量的和,而后在选择合适的计算方法。并养成验算的好习惯。

(四)质疑问难

四、巩固新知 反馈练习,

(1)填空:

1)把20根小棒按2:3的比例分成两堆,一堆( )根,另一堆( )根。

2) 把20根小棒按1:3的比例分成两堆,一堆( )根,另一堆( )根。

(2)六(1)班要举行联欢会,班委决定买12千克水果,据调查,爱吃苹果的同学人数和爱吃梨的人数的比2∶1。请你算一算,苹果和梨分别买多少千克

(3)生活中的问题

李明与黄华合办股份制食品有限公司,李明出资20万元,黄华出资30万元,两年后盈利150万元,怎样分配利润才合理?

要求:独立完成,请学生口头说,教师板演,并说清“比”是怎么得来的。

【设计意图】此题为按比例分配问题的一个变式,解答开始上课时的疑问。引导学生找出部分量的比。让学生在解决实际问题的过程中感受学习的乐趣和价值。

2)一种什锦糖是由奶糖、水果糖和酥糖按照2︰5︰3混合成的。要配制这样的什锦糖500千克,需要奶糖、水果糖和酥糖各多少千克?

五、谈收获,课堂总结。

比的应用教案 7

教学内容:

小学数学人教版第十一册第52页~53页的内容,练习十三的第1~4题。

教学目标:

1、使学生理解按比例分配的意义。

2、使学生理解按比例分配应用题的数量关系,并会解答此类应用题。

3、使学生能运用所学知识来解决生活中的一些简单问题,体会数学与生活的密切联系。

教学重点:掌握按比例分配应用题的解题方法。

教学难点:按比例分配应用题的实际应用。

教学准备:自制多媒体课件。实物投影仪。

教学过程:

一、复习引入:

1、问:我班男女生人数各是多少?你能根据我班男女生人数用比的知识和分数的知识来说一句话吗?

学生汇报:

(1)男生人数是女生人数的( ), 男生人数和女生人数的比是( )

(2)女生人数是男生人数的( ),女生人数和男生人数的比是( )

(3)男生人数占全班人数的( ),男生人数和全班人数的比是( )

(4)全班人数是男生人数的( ),全班人数和男生人数的比是( )

(5)女生人数占全班人数的( ),女生人数和全班人数的比是( )

(6)全班人数是女生人数的( ),全班人数和女生人数的比是( )

2、口答应用题

六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?

口答:100÷2=50(平方米)

提问:这是一道分配问题,分谁?(100平方米)

怎么分?(平均分)

六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?这样分还是平均分吗?

在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们研究按比例分配问题。(板书:按比例分配)

指出:按比例分配就是把一个数量按照一定的比来分配。

二、讲授新课

1、把复习题2增加条件“如果按3 :2分配,两个班的保洁区各是多少平方米?”

1、思考:由“如果按3 :2分配”这句话你可以联想到什么?(小组讨论)

小组汇报:

(1)六年级的保洁区面积是二年级的 倍

(2)二年级的保洁区面积是六年级的

(3)六年级的保洁区面积占总面积的

(4)二年级的保洁区面积占总面积的

……

3、课件演示

4、尝试解答:用你学过的知识解答例题,并说一说怎么想的?(请学生板演)

方法一、3+2=5 100÷5=20(平方米)

20×3=60(平方米) 20×2=40(平方米)

方法二、3+2=5 100× =60(平方米)

100×=40(平方米)

……

5、这道题做得对不对呢?我们怎么检验?

①两个班级的面积相加,是否等于原来的总面积。

②把六年级和二年级的面积化成比的形式,化简后的结果是不是等于3 :2

……

6、练习:

如果你来分配这100平方米的保管区给六(1)班和六(2)班你准备按这样的比来分配,并把两个班保管区的面积算出来。

学生汇报。实物投影出示学生的解题过程,并让学生说说思考过程。

7、出示:学校新买来315本新书,要分配给六年级三个班,如果你是图书管理员,怎样分配才合理呢?

(1)小组讨论,提出各种各样的分配方案,最后统一到按照各班人数进行分配比较合理。

(2)增加条件:六(1)班34人,六(2)班36人,六(3)班35人。

(3)问:3154本书按照人数分配,就是按照怎样的比来分配呢?

(4)学生独立解答。

(5)学生汇报。实物投影出示学生的解题过程,并让学生说说思考过程。

8、小结:观察我们今天学习的按比例应用题有什么特点?

三、开放运用,体验成功

小明九月份共用去零花钱30元,具体用途及分配情况见下表:

零花钱30

《比的应用》教学设计 8

小学《数学》第六册P71的例4是本册教材的难点,学生第一次碰到这种结构的连乘应用题。如何让学生了解并掌握此类应用题的结构特点,如何培养学生的推理能力,如何突破重点、难点,我在“连乘应用题”这堂课的教学中作了如下努力:

一、从实际问题引入新课,引导学生理解题意,进行推理能力的训练。

数学教学法上有句名言:“理解了题意,等于题目做出了一半”。理解题意也是进行推理的前提条件。三年级孩子的思维正是从形象思维向抽象思维过渡的时期,为此在进行例4这种特殊结构的连乘应用题的教学时,我创设“从学具操作掌握运算规律”的教学过程。首先从实际问题出发,引起兴趣:我拿出3盒圆珠笔,问学生知不知道老师这些圆珠笔一共用了多少钱,大家都说不知道;接着我请学生说出要求这个问题必须知道什么条件;然后根据实物给出“吴老师买来3盒圆珠笔”、“每盒10支”、“每支3元”这三个条件,请学生根据对应条件求出对应问题。学生反应热烈。根据学生回答我板书如下:(“盒”、“支”、“元”分别用蓝色、绿色、红色写出)

吴老师买来3盒圆笔,每盒10支,每支2元,一支多少元?(2元);3盒共有多少支?(?);1盒多少元?(?);一共有多少盒?(3盒);一共用了多少元?;一共用了多少元?

由于教师帮助学生从学具操作理解题意,形象性强,学生容易从实物分析中掌握题意,并随着教师的设问激疑,引起探索兴趣,从而进入分析推理的抽象思维训练的环节。在教师的板书帮助下,自己找出对应条件,成功地得出解题方法。这时,学生们面露喜色,学习情绪高涨。

二、寻找突破口,突出重点,突破难点

本节课的难点是被乘数不易找对,被乘数与乘数的对应关系容易搞错,因此我利用每份数、份数与总数之间的对应关系作突破口来解决重点、难点问题。

1、在“基本训练”中加强对应关系训练。

我在“基本训练”中出了两道练习题:

⑴出示“每组种6棵”,“每班种6棵”,“每12个装1箱”,请学生说出“6、6、12”分别表示什么数,为什么,并说出对应的份数(组数、班数、箱数),然后教师给出对应的份数,请学生说出对应的总数,并列式。

这一题为新课找准对应关系作好初步的分析能力训练。

⑵假定“一共可卖多少元”、“一共运进多少个”是要求的总数,请学生在“每个卖9元”、“每箱有30个”中选取与总数对应的每份数。

这一题的练

2、在新授时突出寻找对应关系。

在出示“吴老师买来3盒圆珠笔”、“每盒10支”、“每支2元”后,我让学生边找对应条件边推理。学生回答说“每盒10支”中“10”对应的份数应该是“盒数”,故与“3盒”对应;“每支2元”中“2”对应的'份数应该是“支数”,故与“每盒10支”对应。我说:“不对呀,怎么把2与10这两个每份数对到一块去了呢?”学生这下很得意地告诉我说“每盒10支”可理解为“一盒子里装10支”,对于“2”来说,“10”是个份数。从而学生清楚地看到“每盒10支”这个条件的两面性:与“3盒”对应时,“10”是每份数;与“每支2元”对应时,“10”是份数。但为什么没有人把“3盒”与“每支2元”看作对应条件呢?我把这个问题交与大家讨论得出正确结论,避免出现被乘数与乘数不对应的错误。接着我乘胜追击,引导学生解决两个每份数中哪个作被乘数的问题。我在进行推理训练的基础上,先让学生尝试列式计算。由于学生理解题意,尝试准确率达95%。我装作疑惑不解地问:题目初看有两个每份数,你们为什么都选“2”作被乘数而不选“10”呢?学生抢着告诉老师因为“2”才是与总数直接对应的每份数,故作被乘数。

教师运用尝试教学法,逐步由浅入深,由已知到未知,步步扎实地突破重点和难点,从而使学生从成功的喜悦中积极地掌握了本类应用题的结构特征和列式特点。

三、重视课堂练习,培养思维能力。

练习是使学生掌握知识、形成技能、发展智力的重要手段,为此我进行了多层次、多形式的练习。

1、巩固练习

先让学生找出对应条件及与总数直接对应的每份数,再列式计算(半扶着走,进一步突出重点、难点、准确率100%)→只列式不计算(独立走、准确率100%)→选择题、判断题(准确率98%)。

2、对比练习

为了消除思维定势,防止新旧知识的相互干扰,我出了以下两道练习题:(只列式)

⑴水泥厂用汽车运送水泥,每一辆汽车一次能运5吨,12辆汽车7次能运多少吨?

⑵水泥厂用汽车运送水泥,先来了4辆汽车,后又来了3辆汽车,每辆汽车运5吨,一共能运多少吨?

通过以上两道练习,学生知道并非所有连乘题都是今天学的题型,也不要一看见每份数就盲目用连乘法,从而从比较中进一步掌握了例4的本质特征。

3、发展练习

在这一部分练习中,让学生的知识与实际结合起来,进一步帮助学生掌握连乘应用题结构,升华认识,且充分调动学生学习的主动性和积极性。

⑴出示“我们三(3)班有56人,为扶助失学儿童如果每人捐款5元,全班一共可捐款多少元?” 要求将“56人”改成间接条件,改完口头列式,并注意比较不同结构。(学生改成“三(3)班有8个小组,每组7人”和“三(3)班有男生27人,女生29人”等)这一题培养了学生思维的灵活性和创造性,还渗透了思想教育。⑵出示实物3包练习本(每包50本)和2包卫生纸(每包10卷),请学生编出例4结构的连乘应用题。

⑶在最后一分钟请学生回忆生活中有意义的连乘应用题,进一步把数学学习和解答生活实践的问题结合起来。这时,全班同学分成小组热烈讨论抢着编题。我又鼓励大家课后进行调查研究,编出更有意义的题。一节课在愉快的气氛中结束。

《比的应用》教学设计 9

一、说教材

1、教材简析

本课时的教学内容主要是硝酸及其应用。本章的核心内容是元素化合物知识,而高中阶段学习的元素化合物主要有:碳及其化合物、硫及其化合物、氮及其化合物,镁、溴、碘等众多的物质。硝酸作为含氮物质在介绍元素化合物知识是必不可少的,且硝酸是中学化学中的三大强酸之一,掌握硝酸的性质及其应用是必要的。本节的教学在了解硝酸的氧化性的基础上让学生了解浓、稀硝酸与其他物质发生氧化还原反应时生成物不一样。

2、教学目标

(一)、知识教学目标:使学生掌握硝酸的物理和化学性质,了解随着硝酸浓度的变化硝酸与其他物质反应生成物也发生变化。

(二)、能力目标:培养学生通过观察实验,记录实验现象,分析实验,得出结论的能力,同时增强学生的环保意识。根据所学的氧化剂和还原剂的知识来了解硝酸的氧化性,掌握硝酸与其他物质反应的化学方程式。

(三)、情感目标:激发学生学习化学的兴趣,培养学生严肃认真、实事求是的实验习惯和科学态度,对学生进行辩证法教育,增强环保意识和创新意识。

3、教学的重点、难点:

硝酸的不稳定性、强氧化性是本节课的重点;

硝酸的强氧化性是本节课的难点。

二、说学情和教法

学生在前面的学习中,知道了硝酸是常见的氧化剂,而且具备了一定的观察分析实验的能力。因此通过引导学生从硝酸的应用入手探讨硝酸的性质。根据教材内容和教学目标,运用化学研究的方法论为指导,采用提出问题——实验——观察分析——研究讨论——结论——应用的边讲边实验的实验探索方法进行施教,主要侧重于实验探索、对比分析、归纳概括。

三、说学法

化学是一门以实验为基础的科学,学生通过直观生动的实验来学习,才能留下深刻的印象,也具有说服力。教学时,应该注意及时引导学生对实验现象进行分析。同时利用一些富于启发性的思考问题,活跃学生思维,增强分析问题的能力。引导学生及时进行总结,寻找知识间的相互联系,掌握科学有效的记忆方法,提高记忆的效果。

四、说教学过程

(一)引入新课

简明扼要地从解释谚语雷雨发庄稼的道理引入。

(二)硝酸的性质:包括硝酸的物理性质和化学性质

1、硝酸的物理性质

让学生根据实验提纲进行实验操作,简单描述实验现象,培养学生的观察能力和表达能力。

2、硝酸的化学性质:重点学习硝酸的不稳定性和强氧化性。

《比的应用》教学设计 10

教学目标:

1、通过观察进一步理解等分活动与除法之间的关系,进一步体验除法运算与生活实际的密切联系。

2、结合具体情境,体会“倍”的含义,知道求一个数的几倍是多少用乘法计算。

3、培养学生分析、解决问题的能力,养成良好的学习习惯。

教学重难点:

体会“倍”的含义,知道求一个数的几倍是多少用乘法计算。

教学手段:

多媒体课件。

教学过程:

一、复习准备,为新课铺垫。

1、小朋友们,喜欢去麦当劳、肯德基吗?吃过薯条、汉堡包吗?

2、今天,老师就和大家一起去哪里看看有哪些好吃的东西,好不好?

3、多媒体出示即时练习,指名回答,并说明理由。

二、创设情境,激趣导入。

1、小朋友,在我们的学习生活中,文具的用处可大了!哪位小朋友能说说,你有哪些文具?

2、原来你们有这么多的文具呀!袋鼠妈妈听了可真羡慕呀!于是她决定要在森林里开一家文具店,让小动物们和小朋友一样,都能买到各种各样的文具。我们一起去看看,好吗?

3、出示课题:文具店。

二、自主探索,研究新知。

1、出示教学目标,了解今天的学习任务。

2、了解图意,获取信息。

(1)我们一起看看小动物们都买了什么文具呢?

小兔买了一支笔,花了2元钱。

大灰狼买了一个文具盒。

小牛买了3支铅笔。

(2)们说得真不错,除了这些以外,你还知道什么?

大灰狼花的钱是小兔的'4倍。

3、小组交流,解决问题。

(1)你真是一个认真观察的好孩子!现在大灰狼想考考大家,你们知道他们买文具花了多少钱吗?请小朋友在组里互相说一说,然后完成书上的“填一填”。

(2)学生分组交流,解决问题。

(3)师生共同探讨:你是怎么想的,说说你的理由。

(4)小朋友说得真好!大灰狼和小牛为你们喝彩。谁和他们一样棒,也来说一说。

(5)小朋友们说得太好了!香蕉和小鸡想请你们来帮它们解决问题,你们愿意帮助它们吗?

(6)小结:求一个数的几倍是多少用乘法计算。

4、画一画。

同学们通过了大灰狼和小牛的考验,现在老师想考考你们,愿意接受挑战吗?

请小朋友完成课本48页“画一画”。

(1)学生独立思考。

(2)让学生用学画一画。

(3)指名回答。

(4)你会用什么是什么的几倍说一句话吗?

5、经过刚才的学习,你能解决下面的问题吗?

(1)5的2倍是多少?

(2)3的9倍是多少?

(3)6的5倍是多少?

(4)4的8倍是多少?

三、巩固应用,拓展创新。

1、练一练1、2。

(1)袋鼠妈妈看见小朋友这么聪明,也带来了四个问题想考考大家,我们一起来解决,好吗?

(2)学生独立完成,师生交流。

2、练一练3。

(1)小朋友们,喜欢去旅游吗?

(2)你们去旅游都离不开什么交通工具?

(3)今天老师给同学们带来了3辆车,你能说出是什么车吗?

(4)从图中你得到了哪些数学信息?

(5)你知道大客车上有多少位乘客吗?小轿车上呢?请小朋友们讨论一下,也可以用小棒或圆摆一摆。

四、评价体验。

今天,我们班的小朋友真聪明,不仅解决了小动物提出的各种问题,而且最难的思考题都没有难住你们!现在,谁来说说你有什么收获?

五、板书设计:

文具店

老黄牛花的6元钱 2×3=6(元)

大灰狼花的8元钱 2×4=8(元)

一键复制全文保存为WORD
相关文章