作为一名辛苦耕耘的教育工作者,时常会需要准备好教案,教案有助于顺利而有效地开展教学活动。写教案需要注意哪些格式呢?下面是的小编为您带来的倒数的认识优秀5篇,希望大家可以喜欢并分享出去。
倒数的认识是一节概念教学课,它是在分数乘法计算的基础上进行教学的,通过观察乘积是1的几组数的特点引导学生认识倒数,主要是为后面学习除法作准备的 , 在教学中,必须打下坚实的基础,为以后学习分数除法扫清障碍,提高学习效率。
这节课我主要围绕“导入、探究、深讨、练习、小结”这几个环节进行。
在导入中通过一个小故事中的对联,借助语文学科与数学学习之间的联系为切入点,由文字构成规律激发学生的好奇心,引起学习兴趣。让学生初步感知“倒”的意思。这样学生对马上接触到的“互为倒数”就比较容易理解了。在学生知道什么叫倒数后,让学生根据倒数的意义举例,通过学生的举例进一步理解“乘积是1的两个数是互为倒数”这句话。同时让学生说说你认为在“乘积是1的两个数互为倒数。”这句话中哪几个词比较重要。然后根据学生的回答,理解:“互为”、“乘积是1”、“两个数”。对倒数的定义作深入的剖析。
最后通过适当的练习,让学生自己总结出求带分数、小数的倒数一般先变形,再换位。并且让学生小结出求倒数过程中发现的一些小规律,在探讨中,让学生根据自己的想法研究出:1的倒数是1,0没有倒数。
综观全课下来, 觉得整节课教得比较扎实,该传授的时候做到了适当的传授,练习也有层次感, 对于两个特例“1”和“0”,教学中没有专门由老师提出,而是在学生的深入思考中得出的,这就是学生学习的成果。自我感觉处理得较好。
学生的积极性在家长听课当中也充分的得到了发挥, 平时不做声的孩子当天也敢积极举手发言了,充分的调动了孩子回答问题的欲望。
在设计中,感觉练习的设计还是缺少了难度,缺少了灵活性的题目,对“倒数”的运用练习设计不够丰富。
各位老师:
大家好,今天我有幸和老师们一起探讨小学六年级数学倒数的认识的教学,使我感到无比荣幸。我说课的内容是人教版小学数学六年级上册第三单元第28页例1:倒数的认识。学生在前面已经学过各种数(整数、小数、分数)及分数的加、减、乘法的计算。本节课在此基础上教学倒数的认识,为接下来的分数除法垫定基础。因此,对用倒数意义(乘积是1),求一个数的倒数的方法(用1除以这个数或分子分母调换位置)并不会感到困难。但是,由于倒数及分数除法接触才刚开始,对其意义的理解不透,特别是对0、1、小数、带分数等特殊数的倒数很有难度。因此,这一课的学习对学生来说也是非常必要的。学习这部分内容,有利于学生掌握分数除法的计算方法,并为分数除法的计算打好基础。根据以上分析以及新课标提出的要求:要让学生在获得新知的同时,在情感态度价值观等方面都能得到进一步发展和培养,我制定了以下的教学目标:
1、知识技能目标:理解倒数的意义,会求一个数(整数、小数、分数、带分数)的倒数。
2、情感与态度目标:在探索倒数的过程中,培养学生自学能力、阅读理解的能力,提高学生观察、比较、抽象、概括以及合作学习、口头表达的能力。
由于学生对数及数的运算有了一定的经验,通过知识的迁移学生能很好的掌握知识,所以本课的重点制定为:理解倒数的意义,会求一个数(整数、小数、分数、带分数)的倒数。
新课程标准指出教师是课堂的引导者,而学生才是课堂的主体。所以我制定了以下的教法:
1、目标教学法:课前复习有关数的知识后师直接出示本课时目标:
(1)倒数的意义(即什么是倒数)?
(2)怎样求一个数的倒数?学生自学教材28页的内容。带着问题目的学习,激发他们的学习兴趣,使他们产生迫不及待获取新知的欲望,产生积极的数学情感。
2、任务教学法:学生通过自学、猜测、思考、验证、合作、交流等活动学习新知,完成教学任务。
在这过程中我注意使用启发式原则和因材施教原则,真正体现学生是学习的主体,教师为主导的角色。我遵循新课程标准的要求和新的教学理念(数学教学,要紧密联系学生的生活实践,从学生的生活经验和已有知识出发,创设生动有趣的情景,引导开展观察、操作、猜想、推理、交流等活动,使学生通过数学活动,掌握基本的数学知识和技能,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,以及学好数学的愿望。)并结合学生的年龄及认知特点。对整个教学思路作了如下设想:第一步通过复习有关数的知识,让学生整理整数、小数、分数(带分数)等有关知识,以此激发学生的学习积极性和参与度。第二步通过自学与发现,使学生通过观察、操作、类比、交流、反思等活动探究新知。第三步通过巩固提高及时对所学知识进行练习,达到牢固掌握所学知识的目的。第四步通过课后作业对学生学习的新知识进行消化,从而得到学生学习的信息反馈。四个步骤构为一个整体,同时把教学过程分为复习旧知、探究新知、巩固提高、课后作业四大部分。
老师们,由于本人的能力有限、对《课程标准》的学习不够全面、对学生的学习情况不够了解等原因,在教学中难免有诸多不足之处,恳请各位老师能多找出教学中的不足之处,提出宝贵的建议,以不断提高自己的业务水平,达到为学生负责,为家长负责的目的。在此先谢谢大家。
教学目标:
1、使学生理解倒数的意义,掌握求不同种类数的倒数的方法,并能发现一些规律。
2、培养学生的分析、推理、判断等思维能力,发展学生的思维。
教学重点:理解倒数的意义,会求不同种类数的倒数。
教学难点:熟练正确的求小数、带分数的倒数,发现不同种类数的倒数的一些特征。
教学过程设计:
一、激发兴趣,揭示课题。
1、(投影)这节课老师就要把这里面的奥秘告诉你们,相信你们得知后比老师说得还快。
2、同学们认真观察这些算式,你有什么发现?
板书:乘积是1的两个数
3、你能很快说出乘积是1的两个数吗?你为什么说的这么快?有什么窍门?
板书:分子、分母颠倒位置
4、起名。(师指着分子、分母颠倒位置的两个分数)你能给这样的两个分数起个名吗?
5、根据学生的评价,引出“倒数”一词,板书课题。
(设计说明:通过师生比赛“看谁填得快”这一情境的创设,激发了学生的学习兴趣和强烈的探究欲望。让学生很快说出乘积是1的两个数,并说说有什么窍门,目的是让学生初步感受互为倒数的两个数的特征,即分子、分母颠倒位置。此时让学生给倒数起名,已是水到渠成,同时也让学生获得了积极的情感经验。)
二、探究新知
(一)教学倒数的意义
1、你能根据自己的理解说说怎样的两个数叫互为倒数吗
学√★√生此时回答有两种可能:一种是乘积是1的两个数互为倒数,一种是分子、分母颠倒位置的两个数互为倒数。
3、注重学生的评价,引出并板书倒数的意义:乘积是1的两个数互为倒数。
4、进一步理解意义:在倒数的意义中,你认为哪几个字比较重要?你是怎么理解“互为”一词的?请举例说明。
5、(投影)辨析:下面的说法对吗?为什么?
(1)、是倒数。()
(2)、得数为1的两个数互为倒数。()
(设计说明:让学生根据自己的理解说说怎样的两个数叫互为倒数,并找出概念中的关键词语,举例说明对“互为”一词的理解,处处无不显示出学生是学习活动中的主体,教师是学习活动中的组织者和引导者。)
(二)教学倒数的求法
1、通过刚才的学习,我们已经知道了什么是倒数。那你会求一个数的倒数吗?你会求什么数的倒数呢?怎么求的?能举例说明吗?
生:我会求分数的倒数,如,把分子、分母颠倒位置就是,所以的倒数是。
师:是个真分数,这位同学求的是一个真分数的倒数,还有谁能说出几个真分数的倒数的?(师板书三、四个例子)
(设计说明:通过“你会一个数的倒数吗?你会求什么数的倒数?”这一问题,激起了学生思维的涟漪。此时,同学们首先想到的是求一个分数的倒数,教师强调求的是一个真分数的倒数,并让学生再举几个例子,目的是为了后面让学生发现不同种类数的倒数的特征做准备。)
师:真分数有什么特点?那真分数的倒数有什么特征?
板书:真分数的倒数都大于1。
2、求假分数的倒数,研究假分数的倒数的特征。
师:你还会求什么数的倒数?怎么求的?能举例说明吗?
生举三、四个例子。师板书。
师:假分数有什么特点?假分数的倒数有什么特征呢?
组织学生讨论、交流。
板书:假分数的倒数都大于或等于1。
4、求整数的倒数,讨论“0”和“1”的倒数。
继续问“你还会求什么数的倒数?”当学生说会求整数的倒数时,让学生举几个例子说说怎么求的。
师:“1”也是整数,谁会求“1”的倒数的?怎么想的?
板书:1的倒数还是1。
师:有没有哪个整数的倒数你不会求的呢?
组织学生讨论:0为什么没有倒数?
师:仔细观察:整数的倒数有什么特征?
板书:非0、非1的整数的倒数都是分数单位。
追问:那分数单位的倒数呢?(都是整数)
5、求小数、带分数的倒数。
师:你还会求什么数的倒数?怎么求的?能举例说明吗?
学生的回答有两种可能:一是求小数的倒数;二是求带分数的倒数。
(1)、让学生讨论如何求小数的倒数。
学生会想出两种求法:第一种:把小数化成分数,再颠倒分子、分母的位置,继而求出倒数;第二种:根据倒数的意义,用1除以这个小数。
引导比较两种求法,得出第一种方法比较通用。
(2)、让学生讨论如何求带分数的倒数。
(3)出示几个小数(0.15、2.5、1.25等)和几个带分数让学生求出它们的倒数。
(设计说明:人的思维活动往往由简单到复杂的,小学生更是这样。所以在老师提出“你会求什么数的倒数时”,他们首先想到的是怎样求一个分数的倒数,然后在考虑整数的倒数的求法,最后想到小数、带分数倒数的求法。这样层层深入,丝丝入扣,有效的突出了重点,突破了难点。教师教得轻松,学生学得兴趣昂然。)
(三)学生自行总结求倒数的方法。
板书:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
三、巩固练习
1、呼应开头。现在你知道老师为什么填的这么快了吗?谁愿意在和老师比一次。(投影出示复习题)
2、下面哪两个数互为倒数?(做练习六第二题)
3、辨析(用手势判断对错)。投影出示练习六第5题。
4、谁会填?
(1)×()= ×( )=3×( )=025×( )
(2)×()= ÷()= +()= -()
师:你是根据什么填的?
(设计说明:练习设计,力求扎实而质朴,平淡中透新意。开放题的设计,给学生广阔的思维空间,学生综合运用已学知识解决问题,让课堂教学既有“深度”,又有“温度”。)
四、反思
这节课你有什么收获?印象最深的是什么?
(设计说明:通过回顾,引导学生对本节课学到的知识和方法进行总结,让学生亲身感受到数学学习是有意义的。)
五、课后作业
练习六第6、7题。
教学内容:
教材第19页,例9和“做一做”中的题目,练习五的第1、2题。
教学目的:
使学生理解倒数的意义,掌握求倒数的方法。
教具准备:将复习题写在小黑板上。
教学过程 :
一、复习
出示复习题,让学生口算各题。
(1)3/8×2/3= 3×1/3= 7/15×15/7= 1/80×80=
(2)3/8×1/3= 3/5×1/3= 7/15×5/7= 1/80×80/93=
二、新课
1、教学倒数的意义
教师:“上面的两组题有什么不同?”(第一组每个算式中两个数相乘的积都是1,第二组每个算式中两个数相乘的几不是1。)
教师:“像第一组这样,乘积是1的两个数叫做互为倒数。”
教师举例说明:3/8和8/3互为倒数,就是3/8的倒数是8/3,8/3的倒数是3/8。
教师:“倒数是对两个数来说的,它们是相互依存的,必须说一个数是另一个数的倒数,不能孤立地说某一个数是倒数。”
教师:“例如3/8是倒数,能不能这样说?”(不能)
教师再强调倒数是对两个数来说的。
然后让学生试着说一说第一组中其他3个算式中两个数的关系,说的时候,注意让学生说出“互为倒数”,同时让学生明确谁是谁的倒数。
教师:“谁还能举出几组两个数互为倒数的例子?”
多让学生说一说,并让其他学生根据倒数的意义来检验是不是正确。
2、教学求倒数的方法
(1)出示复习题的第一组算式。
教师:“观察互为倒数的一组数的分子、分母有什么特点?如果给你一个数你能说出它的倒数吗?”让学生适当讨论,并对发现的规律进行归纳。使学生明确:互为倒数的两个数的分子、分母是互相调换位置的。
(2)出示例题
教师:“怎样找出3/5的倒数呢?”
引导学生说出:“只要把3/5的分子、分母调换位置就是3/5的倒数,即:3/5的倒数是5/3
教师板书:
分子、分母调换位置
3/5 ─────────→5/37/2的倒数就可以让学生自己写。
教师接着问:“自然数3的倒数是多少?3可以看成分母是几的分数?”(3可以看成分母是1的分数。)
“那么3的倒数怎样求?”(把分子、分母调换位置,3的倒数就是。)
教师:“任意一个自然数的倒数应该怎样求?”(一个自然数的倒数就是以这个自然数作分母以1作分子的分数。)
接着问:“是不是所有的数都有倒数?什么数没有倒数?”(0没有倒数。)
“0为什么没有倒数?”(因为0不能作分母,所以0没有倒数。)
教师:“请大家总结一下求一个数的倒数的方法。”让学生多说一说,教师注意提醒学生把0排除在外。最后归纳出书上的结语。
2.做教科书第34页的“做一做”。
学生独立解答,教师巡视,了解学生掌握的情况,对学习有困难的学生进行个别辅导。集体订正时,有意识地让学习有困难的学生说一说是怎样想的。
三、巩固练习
1.做练习五的第1题。
学生独立填数,教师巡视,集体订正。对于学习有困难的学生,教师可以适当提示,如:“什么样的两个数相乘的积是1?那么,要填的应该是什么数?”
2.做练习五的第2题。
学生先独立找,教师巡视,看学生找得对不对,存在什么问题。集体订正时,可以让学习比较好的学生说一说是怎样找的。使学生明确,根据倒数的意义,只要看哪两个数的乘积是1,哪两个数就互为倒数。
四、小结
教师:“今天我们认识了倒数,请同学们说一说你们知道了倒数的那些知识?”
五、布置作业
练习五的3、4、9题。
一、课时学习目标:
理解倒数的意义,掌握求倒数的方法;培养观察、概括和用所学知识解决问题的能力;渗透事物相联系的辩证思想。
二、课前预习导学
自学课本上的相关内容,思考并回答下列问题:
①什么叫倒数?
②怎样判断两个数是否互为倒数?
③“是倒数”这句话对吗?
④你能举出几组倒数吗?
⑤怎样求一个数的倒数?
课内学习研讨
1、1的倒数是()
2、0有倒数吗?为什么?
趁热打铁
1:请你写出乘积是1的两个数的算式,每人写一个,然后传给小组的其他成员,依次类推,在1分钟内答对最多的组获胜。
2、5/6的倒数是()1/12的倒数是()
5的倒数是()2又1/2的倒数是()
7/4的倒数是()1的倒数是()
五、巩固训练
我是公正小法官,谁对谁错我来判
1、2是倒数,1/2也是倒数()
2、1的倒数是1,0的倒数是0()
3、因为1/3+2/3=1,所以1/3和2/3互为倒数()
4、如果a和b互为倒数,那么a×b=1()
5、一个数的倒数一定比它本身小()
选择
1、因为5/3×3/5=1,所以()
A、5/3是倒数B、3/5是倒数
C、5/3和3/5都是倒数
D、5/3和3/5互为倒数
2、2又5/6的倒数是()
A、16/5B、6/5
C、6/17D、17/6
3、最小的自然数的倒数是()
A、0B、1
C、不存在D1/2
精彩搭配
把互为倒数的数连接起来
学了本节课,你有什么收获呢?请写在下面