六年级上册《圆的周长》数学教案优秀9篇

作为一名辛苦耕耘的教育工作者,时常要开展教案准备工作,借助教案可以有效提升自己的教学能力。我们该怎么去写教案呢?以下是编辑午夜为大伙儿整理的9篇六年级上册《圆的周长》数学教案。

《圆的周长》教案 篇1

教学目标:

1.经历圆周率的探索过程,理解圆周率的意义,掌握圆周长的公式,能运用圆周长公式解决一些简单的实际问题。

2.培养学生的观察、比较、分析、综合及动手操作能力,发展学生的空间观念。

3.合圆周率的学习,对学生进行爱国主义教育。

教学重点:

探究圆周长与直径之间的关系,掌握圆周长公式。

教学难点:

理解圆周率的意义,能运用圆的周长公式解决一些简单的实际问题。

课前准备:

多媒体课件、大小不同的圆、线、小尺。

教学过程:

一、教学例4。

1.交流:同学们,我们经常听人们说:“我买了一个28的自行车。”“我买了一个24英寸的彩电”。这里的“28”和“24英寸”都是表示物体规格的数字。

2.件出示例4题目及图示,全班交流:你从图中了解哪些信息?

3.组交流:从你课前滚动大小不同的圆片的过程中,你有什么发现?

4.件演示车轮滚动,验证学生的发现。

5.班交流:

你觉得圆的周长和圆的什么关系?(直径越大,圆也就越大,所以周长也越长。因为直径是半径的2倍,所以说圆的周长跟半径也有关。)

二、教学例5。

1.件出示例5,全班交流:这样的实验你们课前做了吗?

2.拿出课前探究圆周长与圆的直径关系实验单,小组交流并演示自己的探究过程和结果。

3.名汇报,全班交流。

⑴ 各小组派一名同学展示实验记录单,介绍实验过程。

⑵ 纵观各组的实验结果,你们有什么发现?

圆的周长总是直径的3倍多一些。

4.生自学课本93页,了解圆周率及我国古代数学家的杰出研究成果。

5.括圆周长公式。

⑴ 圆周率用字母π表示,如果圆周长用字母C表示,直径用字母d表示,谁来说一说π、C、d之间有什么关系?

学生先在小组内交流再全班交流。

(板书:C÷d=π,C÷π=d ,C=πd)

⑵ 求圆的周长用哪个公式?(C=πd或C=2πr)

三、巩固拓展

1.成“试一试”

⑴ 学生独立计算。

⑵ 全班展示交流。

2.成“练一练”。

3.成练习十四第1题。学生独立计算,再全班交流。

4.成练习十四第2题。

⑴ 学生独立计算。

⑵ 全班展示交流。

⑶ 学生订正。

5.成练习十四第3题。指名口头列式,学生集体计算。

6.成练习十四第4题。学生独立计算后再汇报交流。

四、总结延伸

本节课,你有哪些收获?还有什么疑问?

板书设计:

圆的周长

圆的周长教案 篇2

教学目标:

⒈使学生知道圆的周长和圆周率的含义。让学生体验圆周率的形成过程,探索圆的周长的计算公式,能正确计算圆的面积。

⒉使学生认识到运用圆的周长的知识可以解决现实生活中的问题,体验数学的价值。

⒊介绍古代数学家祖冲之对圆周率的研究事迹,向学生进行爱国主义教育。

教学重点、难点

教学重点:理解和掌握求圆周长的计算公式。教学难点:对圆周率π的认识。

教学过程设计

一、创设情境,引发探究

⒈"几何画板"《米老鼠和唐老鸭赛跑》演示:休息日,米老鼠和唐老鸭在草地上跑步,米老鼠沿正方形路线跑,唐老鸭沿着圆形路线跑。

⒉揭示课题

⑴要求米老鼠所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量出它的什么就可以了?

⑵要求唐老鸭所跑的路线,实际上就是求圆的什么呢?

板书课题:圆的周长

二、人人参与,探究新知

(一)教具演示,直观感知,认识圆周长。

教师出示教具:铁丝圆环、圆片,让学生观察围成圆的线是一条什么线,提问:这条曲线就是圆的什么?

(二)理解圆周率的意义

活动一:测量圆的周长

⒈教师提问:你能不能想出一个好办法来测量它的周长呢?

①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。则师生合作演示量教具圆铁环的周长。

然后各组分工同桌合作,量出圆片的周长。

②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作。测出圆片的周长。

⒉用"几何画板"《小球的轨迹》演示形成一个圆。

提问:小球的运动形成一个圆。你能用刚才的方法测量出圆的周长吗?

⒊小结:看来,用滚动、绕线的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?

活动二:探究圆周长与直径的关系,认识圆周率。

⒈圆的周长与什么有关。

⑴启发思考

正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关系呢?

⑵利用不同长度的小球形成的三个圆,让学生观察思考考:。哪一个圆的周长长?圆的周长与它的什么有关呢?

得出结论:圆的周长与它的直径有关。

⒉圆的周长与直径有什么关系。

⑴学生动手测量,验证猜想。

学生分组实验,并记下它们的周长、直径,填入书中的表格里。

⑵观察数据,对比发现。

提问:观察一下,你发现了什么呢?

(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)

⑶出示"几何画板"《周长与直径的关系》演示。

⑷比较数据,揭示关系。

正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系吗?猜猜看,圆的周长可能是直径的几倍?

学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。

提问:这些周长与直径存在几倍的关系,(3倍多一些),是不是所有的圆周长与直径都是3倍多一些呢?教师演示"几何画板"最后师生共同总结概括出:圆的周长总是直径的3倍多一些,板书:3倍多一些。

⒊认识圆周率

⑴揭示圆周率的概念。

这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母π表示。板书:圆周率

现在,谁能说说圆的周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长÷直径=π

⑵介绍π的读写法

⑶指导阅读,了解中国人引以为自豪的历史。

提问:你知道了什么?

(三)推导圆的周长计算公式。

⑴提问:已知一个圆的直径,该怎样求它的周长?板书:C=πd

请同学们从表格中挑一个直径计算周长,然后跟测量结果比比看,是不是差不多?

⑵提问:告诉你一个圆的半径,合计算它的周长吗?怎样计算?板书C=2πr。

提问:"几何画板"上的小球轨迹形成的圆你会求周长吗?

学生和自己的伙伴一起解答例1和做一做并说出这两题用哪个公式比较好?

三、应用新知,解决问题

1、和自己的伙伴一起解答例1和做一做

2、说出这两题用哪个公式比较好?

四、实践应用,拓展创新。

⒈基础性练习:

(1)求下列各圆的周长(几何画板)

r=3厘米 d=4厘米

(2)、我们现在有办法求唐老鸭跑的路程吗?

⒉、判断

①圆的周长是直径的π倍。

②大圆的圆周率小于小圆圆周率。

3、提高练习

在我们校园内有一棵很大的树,你们有什么办法可以测量到这棵大树截面的直径?

五、总结评价,体验成功

1、你学到了什么?

2、你是怎么学到的?

六年级上册《圆的周长》数学教案 篇3

【教学内容】

圆的周长

【教学目标】

知识与技能:

1、让学生知道什么是圆的周长。

2、理解并掌握圆周率的意义和近似值。

3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。

过程与方法:让学生通过测量几组圆的直径和周长,自主发现周长和直径的比值是一个固定值,从而引出圆周率的概念,并总结出圆的周长计算公式。

情感、态度与价值观:培养和发展学生的空间观念,培养学生抽象概括能力和解决简单的实际问题能力。

【教学重难点】

重点:理解和掌握圆的周长的计算公式。

难点: 对圆周率的认识。

【知识回顾】

圆的周长与直径之间有何关系?

【新知探究】

例1、一辆自行车的轮子半径大约是33厘米,它转动一同,大约可以走多远?(结果保留整米数)小明家离学校1KM,轮子大约转了多少圈?

C=2 r

2×3.14×33=2.7.24≈2(m)

1km=1000m

1000÷2=500(圈)

答:………

【知识梳理】

本节课你学习了哪些知识?

【随堂练习】

1、一张圆桌面的直径是0.95米,求它的周长是多少米?(得数保留两位小数)

2、花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的。直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?

3、钟面直径40厘米,钟面的周长是多少厘米?

4、钟面分针长10厘米,它旋转一周针尖走过多少厘米?

5、喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?

圆的周长教案 篇4

一、指导思想与理论依据:

《新课标》指出:有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的的重要方式。数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。

根据这一理念,在本节课的设计上,我突出两点,一是让学生主动经历数学结论的猜想动手操作,实践验证以及表述的过程;二是对学生放手,还学生自主的空间,自主探究,合作交流的学习方式贯穿课堂的始终。

二、教材及学情分析:

教材是在学生掌握了长方形和正方形周长,并初步认识了圆的基础上学习的。它是学生初步研究曲线图形的基本方法的开始,又是后面学习“圆的面积”以及今后学习圆柱、圆锥等知识的基础。学情分析:学生虽然有计算直线图形周长的基础,但第一次接触曲线图形,概念比较抽象不容易理解,推导圆周长的计算方法、理解圆周率的含义会有一定的困难。

三、教学目标、重点及难点:

1、知识和技能:

使学生直观认识圆的周长,掌握圆的周长的计算方法,理解圆周率的意义,并能正确灵活应用计算公式解决简单的实际问题。

2、过程与方法:

(1)通过组织学生观察和实验等活动,引导学生经历“猜想-验证-归纳、概括”的学习过程,认识圆周率。

(2)经历圆的周长计算公式的发现、探索过程,培养学生分析、抽象、概括,以及发现规律的能力。

3、情感与态度:

(1)通过学生动手操作、发现,激发学习兴趣,使学生体验探究问题的乐趣;

(2)结合圆周率的介绍,使学生受到爱国主义科学精神的教育。

(3)在解决问题过程中,增强应用意识。

教学重点:

让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程理解并掌握圆的周长计算方法。

教学难点:

对圆周率的认识。

教学准备:

⒈圆形物体实物,。

⒉每个学生准备三个大小不同的圆片,一根线,一把直尺。

四、教法:

1、自主探究法。通过学生动手实践,寻求测量圆周长的方法,培养学生动手操作的能力,激活学生的思维。

2、合作交流法。合作交流是学生学习数学的主要方式。通过学生的团结协作,自主探索,讨论交流,培养学生的团结合作精神,激发学生主动学习的兴趣。

五、主要教学环节与设计:

通过以下环节教学本课:

一创设情境,初步感知

二合作交流,探究新知

三实践应用,解决问题

四畅谈收获,课外延伸

六、教学过程:

第一个环节:创设情境,初步感知师:

哪些同学会骑自行车?在骑车时,车轮向前滚动一周,行驶了多长的路程?怎样计算?(出示车轮向前滚动的录像。)

生:求行驶多长的路程就是求圆形的周长。

师:今天就来学习怎样计算圆的周长。

此环节的设计目的:从学生熟悉的自行车入手,让学生感知求车轮滚动一周就是求圆的周长,激发学生学习新知的兴趣。

第二个环节:合作交流、探究新知

(一) 直观感知什么圆的周长通过以下活动帮助学生认识什么是圆的周长。

1、请你指出老师手中圆形物体的周长。准备一些实物有硬币、茶杯垫,让学生用手在圆周上滑摸等方式认识并理解圆的周长。

2、分析比较长方形、正方形和圆的周长各有什么不同?

3、指一指、描一描自己手中圆片的周长。

设计意图:让学生动手摸一摸后,初步感知圆的周长就是圆一周的长度。更增强了对圆周长的感性认识,并形象理解圆周长的意义。

(二)探究圆周长的计算方法

圆周长计算公式的推导这一内容,我安排了三个环节:

1、揭示矛盾,产生探索新知欲望。请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

预设的几种情况:

(1)“滚动”——把实物圆沿直尺滚动一周;

(2)“缠绕”——用绳子缠绕实物圆一周并拉直;

(3)“折叠”——把圆形纸片对折几次,再进行测量和计算;

小结:以上的几种方法都是要“化曲为直”。

出示地球图片。

如果要计算地球赤道一周的长度,用刚才的绕线法、滚动法显然都无法测量怎么办?我们需要探讨求圆周长的一般方法。

设计意图:

1、这个过程中让学生明白 “缠绕”、“滚动” 的方法是有局限性的,引发其探索“计算公式”的积极性、必要性,为深入研究圆周长的计算问题作好了“心理”铺垫。这样的矛盾,反而更能激发学生的求知欲。

2、操作实验,探究圆周长计算方法在这一内容中,探究圆周率,理解圆周率是本课的难点,因此我设计让学生分小组合作,通过“猜想——实验验证——归纳概括得到结论”来完成。

(1)猜想,目的是让学生体会周长与直径之间的关系,重点解决“周长与什么有关”的问题。

师:圆的周长与它的什么有关呢?

生:圆的周长与它的直径有关。圆直径长,周长就大;直径短,圆周长就小。

(2)实验验证,目的是让学生发现周长与直径之间固定的倍数关系,重点解决“周长与直径有怎样的实质关系”的问题。

师:我们知道正方形周长是边长的4倍,那么圆的周长是直径的几倍呢?我们能不能像求正方形周长那样找到求圆周长的一般方法呢?

请同学们分组做个小实验,请利用手中的学具,用你喜欢的方法验证圆的周长与直径的倍数关系,记录在表格中。请你按照“我们组利用什么方法——过程怎样——结果如何”的顺序汇报实验过程

小组汇报:

生:我们测量的第一个圆直径是10厘米,周长是31厘米,周长是直径的3.1倍。第二个圆直径是2厘米,周长是6.5厘米,周长是直径的3.25倍。第三个圆直径是5.5厘米,周长是16.5厘米,周长是直径的3倍。

师:通过计算你们发现了什么?

生:每个圆的周长,都是它的直径长度的3倍多一些。

追问:那么是不是所有的圆周长与它直径都有这种关系呢?

最后师生共同概括出:任何一个圆的周长总是它的直径长度的3倍多一些。

师:由于测量时存在误差,导致结果不太一样,这很正常。你们的研究结果已经很接近数学家的结果了。谁知道我们把这个3倍多一些的数叫做什么?

生:圆周率。

师:你对圆周率还有哪些了解?

这个3倍多一些的数经过数学家周密计算发现是一个固定不变的数,我们把这个倍数叫做圆周率。读作π。对圆周率的发现最杰出的贡献者是祖冲之。圆周率是一个无限小数,在科技飞速发展的今天,计算机已经计算到了小数点后上亿位。小学阶段取它的近似值为3.14。板书:π≈3.14(出示相关的资料)

设计意图:通过同学们在小组中操作、交流、观察等活动,亲历感悟发现知识,达到理解的目的。圆周率有的学生早已知道,圆周率的有关知识是在师生共同补充交流中得到的,体现以学生为主体。祖冲之的事迹是一个非常好的爱国主义教育的典型。使学生感受到中国文化的博大精深,发展学生的情感态度价值观目标。

(3)得出结论师:你知道圆周长的计算方法了吗?

生:知道。

板书公式:C=πd,C=2πr

设计意图:推导圆周长公式,解决好了圆周率的问题,圆的周长的计算方法只是水到渠成的结果。

第三个环节:实践应用,解决问题

这一环节是对我们所探究结果的运用,即运用圆周长的计算公式来解决生活中的实际问题。

1、解决刚上课时提出的问题:车轮向前滚动一周,行驶了多长的路程?做到首尾呼应。

2、设计了三道有梯度的练习:

①d=5米, C=?

②r=5厘米 C=?

③C=6.28米d=?

3、明辨是非,下面的说法对吗?

①π=3.14

②大圆的圆周率小于小圆的圆周率。

③圆的周长是它的半径的2π倍。

意图:设计有关圆周率的判断,是帮助学生巩固新概念,加深对圆周率的理解。

第四个环节:畅谈收获,课外延伸作业:

赤道就像地球的“腰带”,它的长度大约是4万千米。你知道地球的半径大约是多少吗?

设计意图:在课堂即将结束时,我设置了与前面相呼应的求赤道周长的课外的拓展。这样的设置,把课堂的教学延伸到课外,提高学生的学习能力。

你有什么收获?(引导学生总结所学内容,学习方法,获得情感态度等体验。)

七、板书设计:

圆的周长

化曲为直 圆的周长÷直径=圆周率

C÷d=π 3.14×20=62.8(英寸)

C= πd 答:车轮向前滚动一周,行驶了62.8英寸。

C=2πr

圆的周长教案 篇5

教学目标:

1、生经历探索已知一个圆的周长 求这个圆的直径或半径的过程,体会解题策略的多样性。

2、生进一步理解周长、直径、半径之间的关系,能熟练运用圆的周长公式解决一些实际问题。

3、学生感受平面图形的学习价值,进一步提高学习数学的兴趣和学习数学的信心。

教学重点:

探索已知圆的周长,求这个圆的直径或半径的方法。

教学难点:

能熟练运用圆的周长公式解决实际问题。

课前准备:

多媒体课件

教学设计

一、教学例6。

⑴ 课件出示例6的场景图,全班交流:怎样能准确测算出这个花坛的直径,又不会损伤到花坛里的花草呢?(先测量出花坛的周长,再算出花坛的直径。)

⑵ 课件出示测量的结果:花坛的周长是251.2米。

小组交流:知道了这个花坛的周长,怎样算出这个花坛的直径呢?

① 在小组中说说自己的想法。

② 展示自己是怎么解答的。

⑶ 全班展示、交流。

① 根据圆周长公式C=πd列方程解答。

解:设这个花坛的直径是x米。

3.14x=251.2

x=251.2÷3.14

x=80

② 直接用除法计算。

251.2÷3.14=80(米)

⑷ 总结比较:这两种方法有什么相同和不同的地方?你喜欢什么方法?为什么?

小结:这两种方法都是根据圆周长的计算公式,列方程是顺着题意思考,用除法计算是直接利用周长公式中各部分之间

的关系计算。

2、习“试一试”。

二、巩固拓展

1、成“练一练”。

提醒学生估算时,可将圆周率看作3,并使学生意识到3比圆周率实际值小了一些,所以周长也应该适当估小一点。

2、成练习十四第5题。

3、成练习十四第6题

4、成练习十四第7题。

5、生完成练习十四第8题。

6、成练习十四第9、10题。

三、总结延伸

本节课,你有哪些收获?还有什么疑问?

板书设计:

圆的周长教案 篇6

教学内容:

圆的周长的综合练习

教学目标:

通过练习,使学生加深对圆的认识,能正确计算圆的周长,并能根据圆的周长求这个圆的半径或直径。

教学重点:

理解圆的半径、直径、周长之间的关系

教学难点:

能运用知识解决一些实际问题

教学过程:

一、揭示课题

今天这节课,我们把学习圆的有关知识进行整理一下,并通过一些练习来巩固这方面的知识。

板书课题:圆的周长

二、练习指导

基本练习(口答)

⑴在同一个圆内,所有的半径,所有的直径,直径是半径的,半径是直径的。

⑵决定圆的位置,决定圆的大小。

⑶什么是半径?什么是圆的直径?

⑷圆的周长总是它直径的倍,它是一个固定不变的数,用字母表示。

练习指导

1、求下面各圆的周长

d=2米 d=1.5厘米 r=6分米

2、求下面各圆的直径

C=28.26厘米 C=50.24米

3、求下面各圆的半径

C=12.56米 C=314厘米

以上几题均由学生板演,其余齐练

全班讲评,订正

三、解决实际问题

1、一根绳子长6.28米,在一根圆木上,正好绕了5圈,这根圆木的直径是多少?

2、一面钟的分针长14厘米,经过一小时,分钟针尖可划过多少厘米?

3、小明的自行车轮胎的直径是0.6米,小明骑一分钟车轮转动了100圈。

①他一分钟可行驶多少米?

②他要通过2180米长的大桥,大约需要几分钟?

四、课终小结

今天我们练习了什么?你有什么收获?

关于圆的周长教学设计教案 篇7

教学目标:

1.生经历探索已知一个圆的周长 求这个圆的直径或半径的过程,体会解题策略的多样性。

2.生进一步理解周长、直径、半径之间的关系,能熟练运用圆的周长公式解决一些实际问题。

3.学生感受平面图形的学习价值,进一步提高学习数学的兴趣和学习数学的信心。

教学重点:

探索已知圆的周长,求这个圆的直径或半径的方法。

教学难点:

能熟练运用圆的周长公式解决实际问题。

课前准备:

多媒体课件

教学设计:

一、教学例6。

⑴ 课件出示例6的场景图,全班交流:怎样能准确测算出这个花坛的直径,又不会损伤到花坛里的花草呢?(先测量出花坛的周长,再算出花坛的直径。)

⑵ 课件出示测量的结果:花坛的周长是251.2米。

小组交流:知道了这个花坛的周长,怎样算出这个花坛的直径呢?

① 在小组中说说自己的想法。

② 展示自己是怎么解答的。

⑶ 全班展示、交流。

① 根据圆周长公式C=πd列方程解答。

解:设这个花坛的直径是x米。

3.14x=251.2

x=251.2÷3.14

x=80

② 直接用除法计算。

251.2÷3.14=80(米)

⑷ 总结比较:这两种方法有什么相同和不同的地方?你喜欢什么方法?为什么?

小结:这两种方法都是根据圆周长的计算公式,列方程是顺着题意思考,用除法计算是直接利用周长公式中各部分之间

的关系计算。

2.习“试一试”。

二、巩固拓展

1.成“练一练”。

提醒学生估算时,可将圆周率看作3,并使学生意识到3比圆周率实际值小了一些,所以周长也应该适当估小一点。

2.成练习十四第5题。

3.成练习十四第6题

4.成练习十四第7题。

5.生完成练习十四第8题。

6.成练习十四第9、10题。

三、总结延伸

本节课,你有哪些收获?还有什么疑问?

圆的周长教案 篇8

教学内容:

圆周长计算公式的推导、周长计算(课本第62——64页的内容、练习十五第1题)。

教学目标:

1、认识圆的周长,理解圆周率的意义。

2、掌握圆周长的计算公式,会用公式正确计算圆的周长。

3、介绍祖冲之在圆周率方面的成就,进行爱国主义教育。

教学重难点:

1、圆的周长公式推导及运用公式计算圆周长是重点。

2、通过实验找出圆的周长与直径的关系—圆周率是难点。

3、关键是让学生动手操作测周长与直径。

教学准备:

学生准备:大小不同的圆柱物体,光盘。直尺或三角板、绳子。

老师准备:小黑板

教学过程:

一、复习铺垫(5分钟)

1、小黑板出示

(1)

(2)

10厘米 6分米

2、提出问题:

同学们,老师要用铁丝分别做成上面两个图形的框架,

(1)请同学们帮助老师算一算每个图形需要用多长的铁丝?

(2)、每个图形需要用多长的铁丝,是求什么的?

(3)什么是周长?周长的单位有哪些?

(4)、要求图(1)、图(2)的周长应该知道什么条件?

二、探索新知(25分钟)

(一)认识圆的周长

1、出示:圆的图形 和其他实物圆。

2、提问:

(1)这是一个什么形实物?

(2)老师要用铁丝给它箍紧,需要用多长的铁丝,是求什么的?圆周长指哪儿?

3、感知圆的周长: 让学生拿出光盘或其它实物圆摸一摸,进行感知。

4、怎样才能知道一个圆的周长呢?让学生猜一猜,说一说,。

(二)提示课题

在现实生活中,有很多的圆形物体的周长测着很不方便。我们能不能也像计算长方形、正方形周长一样找到计算圆周长的计算公式呢,今天我们一起来探讨如何找到圆周长的计算公式,来计算圆的周长。

板书课题——圆周长计算

(三)圆的公式推导

1、猜一猜,想一想,动手操作(8分钟)

(1) 提问:通过前面复习,我们知道长方形的周长与它的长和宽有关,正方形的周长与它的边长有关。那么请同学们想一想:

圆的周长与它的什么条件有关?

独立思考后,前后桌四人交换意见。

学生汇报:圆的周长和直径(或半径)有关。

继续提问:它们之间到底有什么的关系呢?

故事激趣

我国古代有一位伟大的数学家和文学家祖冲之就发现了圆的周长与它的直径之间的关系,这个发现是在1500年前。今天我们各位同学也当一回科学家,进行一次研究,来发现圆周长与直径之间到底有什么关系。

(2)动手实验:(四人一组,合作完成) (一组测一个)

a、取出圆形纸板,量出圆形纸板的直径。

b、用绳子绕圆形纸板一周,绕圆一周的绳子长度,就是这个圆形的周长,然后测出绳子长度。 c、填到书中表内。

d、算出周长和直径的比值。

e、 汇报,老师把表画在小黑板上,并填表。

2、观查数据,发现规律:(5分钟)

观察表中数据,说一说你有什么发现?(四人一组,共同讨论,)

小组汇报:

同一个圆,它的周长是它的直径的3倍多一些。

3、认识圆周率(2分钟)

(1)在学生发现圆周长与它的直径关系的基础上,老师明确:

刚才每一组同学测的圆大小都不同,但发现:任意一个圆的周长与它的直径的比是一个固定的数。即一个圆的周长是它的直径的3倍多一点。我们把这个比值,即这个固定的数(不变的数)给它起个名字叫圆周率。用字母π表示。 板书:圆周长=π 或 圆周长:它的直径=π 它的直径

(2)让学生读一读( Pài )写一写。

(3)了解π的值。

A、π是一个无限不循环小数,π=3.1415926535.。.。.。.。.。

B、在实际应用中一般只取它的近似值,即π≈3.14.

4、圆周长公式推导:(5分钟)

老师:如果已知圆的直径,如何计算圆的周长。

圆周长= π×直径

如果周长用C表示:字母公式C=πd

知道半径,怎样求周长C=2πr

( 四)应用公式(2分钟)

教学例1:

(1)出示例题:圆形花坛的直径是20米,它的周长是多少米?

(2)学生读题并尝试列式计算。

(3)学生板演:3.14×20=62.8(米)

说明:解题时可以不写计算公式

π取两位小数3.14,计算中不必使用 ≈ ,直接用 = 号。

三、巩固练习(8分钟)

1、 完成课本64页做一做。

2、完成练习十五第1题。

3、补充作业。判断题:

(1)圆的周长刚好是直径的3.14倍。

(2)大圆的圆周率大,小圆的圆周率就小。

(3)π是两位小数。

(4)圆的周长等于它的半径的2π倍。

(5)求周长,直径是唯一条件。

四、课堂小结(2分钟)

本节课我们认识了圆的周长,并且通过实验知道,圆有大小,但每一个圆周长与它的直径的比的比

值都相等,并且是一个固定的数,这个数叫圆周率,用π表示。从而找到了计算圆周长的公式,周长=直径 × π或半径×2×π。

五、布置作业:课堂作业

六、板书设计圆周长计算

圆周长=π(圆周率) 周长是直径的3倍多一点 (即 周长是直径的π倍 ) 它的直径, 圆周长= π×直径

因为d=2r 圆周长=π×半径 ×2

π是一个无限不循环小数,π=3.1415926535 C=πd C=2πr

注:(1)在实际计算中,π取近似值保留两位小数约等于3.14 。

(2)π在计算的应用中,结果不用“≈”号,而用“=”号。

3.14×20=62.8(米)

答:圆形花坛的周长是68.2米

七、课后记

《圆的周长》是在学生学习了正方形周长的基础上进行教学的。由复习老知识引入课题,目的是激发学生的探究积极性,然后我让学生自己推导出圆的周长公式,让学生以小组为单位进行操作:用“化曲为直”的绕线法测量圆的周长,并做好相应记录,填好表,为下一步探究奠定基础,接下来让学生猜一猜、想一想圆的周长与直径有什么关系,进而找到圆的周长与直径的关系,推出圆周率,得出圆的周长公式。最后让学生把得出的圆的周长公式应用到练习中。

本节课中,我觉得比较成功的是:

首先,在创设情境时,我用旧知引新知导入新课,以学生的兴趣为出发点,激发学生的探索欲望,为后面的学习做好铺垫。其次,学生经过自主探究、合作、展示等教学活动,使学生深切地体会到“化曲为直”的数学思想方法,与此同时,我想学生提出质疑测量、学生通过小组合作的形式验证猜想,在理解了圆的周长与直径的关系及圆周率的基础上,推导出圆的周长的计算公式,再回到课前情境中,使学生在掌握新知识的基础上,解决实际问题,培养学生的应用意识。 在本节的教学中,我发现情境导入吸引了学生的注意,并对新知识产生了浓厚的兴趣,由于前面“正方形周长及圆的认识”知识的成功铺垫,因此本节课学生通过动手操作、自主探究、合作交流‘展示等活动,理解了“化曲为直”的数学思想方法。在推导公式过程中,因为亲自经历了小组内探讨圆的周长与直径的关系的过程,所以学生能较为容易地推导出圆的周长计算公式。

本节课中也存在一些不足之处:比如:在对学生的表达进行评价是艺术性略显不足,应多鼓励,使学生获得成功的体验;另外,我对课堂的掌控和把握能力还需提高,虽然对教材进行了较为深入的分析,但还没有做到不彻底,小组合作要求不到位。

在今后的教学工作中,我将弥补以上不足之处,提高个人的理论修养,使自己的教学趋于完美。

圆的周长教案 篇9

教学内容:

教科书P 92-93例4、例5,试一试、练一练和练习十四第1-4题

教学目标:

1.使学生认识圆的周长,认识圆周率,理解和掌握圆的周长计算公式。应用圆的周长公式计算周长,解决周长计算的简单实际问题。

2.使学生经历观察、操作、测量、计算和交流、归纳等活动过程,推导圆的周长计算公式,积累推导计算公式的学习过程,发展分析、综合和归纳、概括等思维能力。

3.使学生进一步体验图形与生活的联系,感受平面图形的学习价值,积累参与实验探究,培养实事求是的科学态度,感受探索计算公式的成功,树立学习数学的自信心。

教学重点:

理解并掌握圆的周长的计算公式

教学难点:

推导圆的周长公式

教学过程:

一、教学例4。

1.谈话:同学们,我们经常听人们说:我买了一个28的自行车。我买了一个24英寸的彩电。这里的28和24英寸都是表示物体规格的数字。

2.课件出示例4题目及图示,全班交流:你从图中了解哪些信息?

3.小组交流:从你课前滚动大小不同的圆片的过程中,你有什么发现?

4.课件演示车轮滚动,验证学生的发现。

5.全班交流

你觉得圆的周长和圆的什么关系?(直径越大,圆也就越大,所以周长也越长。因为直径是半径的2倍,所以说圆的周长跟半径也有关。)

二、教学例5。

1.课件出示例5,全班交流:这样的实验你们课前做了吗?

2.拿出课前探究圆周长与圆的直径关系实验单,小组交流并演示自己的探究过程和结果。

周长/cm 直径/cm 周长除以直径的商

(保留两位小数)

3.指名汇报,全班交流。

⑴ 各小组派一名同学展示实验记录单,介绍实验过程。

⑵ 纵观各组的实验结果,你们有什么发现?

圆的周长总是直径的3倍多一些。

4.学生自学课本93页,了解圆周率及我国古代数学家的杰出研究成果。

5.概括圆周长公式。

⑴ 圆周率用字母表示,如果圆周长用字母C表示,直径用字母d表示,谁来说一说、C、d之间有什么关系?

学生先在小组内交流再全班交流。

(板书:Cd=,C=d ,C=d)

⑵ 求圆的周长用哪个公式?(C=d或C=2r)

三、巩固拓展

1.完成试一试

⑴ 学生独立计算。

⑵ 全班展示交流。

2.完成练一练。

3.完成练习十四第1题。

学生独立计算,再全班交流。

4.完成练习十四第2题。

⑴ 学生独立计算。

⑵ 全班展示交流。

⑶ 学生订正。

5.完成练习十四第3题。

指名口头列式,学生集体计算。

交流:为什么求是车轮的周长?

6.完成练习十四第4题。

学生独立计算后再汇报交流。

四、总结延伸

本节课,你有哪些收获?还有什么疑问?

一键复制全文保存为WORD
相关文章