作为一名专为他人授业解惑的人民教师,时常要开展教学设计的准备工作,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。那么优秀的教学设计是什么样的呢?
梯形面积的计算教学内容:教材第53---54页面积计算公式的推导、例题、练一练,练习十一第1---3题。教学要求: 1、使学生在理解的基础上掌握梯形的面积计算公式,能正确地计算梯形的面积。 2、通过操作、观察、比较、发展学生的空间观念,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力,以及探索、创新意识。教学重点、难点:梯形面积公式的推导、掌握及其应用。 教学过程 教 师 活 动 学 生 活 动 备 注一、复习旧知1、 导入 (1)我们会求哪几种图形的面积?是怎样计算的? 教师根回答板书: 长方形的面积=长×宽 正方形的面积=底×高 平行四边形的面积=底×高 三角形的面积=底×高÷2 (教师在学生回答三角形的面积公式时让学生说说怎么得到的?) 教师小结:我们可以把没有学过的图形转化成学过的图形,然后再进行面积的计算) 板书:转化二、教学新课1、今天我们要学习梯形面积的计算,教师出示梯形。 2、能知道这个梯形的面积吗?你打算用什么方法来知道这个梯形的面积? 教师板书课题:梯形面积的计算 3、操作实验 (1) 教师让学生拿出准备好的梯形,同桌合作讨论,求出这个梯形的面积。 出示思考题:拼成的图形与原来的梯形之间是什么样的关系? 教师在学生交流时巡视指导。 (3)教师在学生演示的基础上示范拼法。 教师根据学生的回答板书:两个完全一样的梯形可以拼成平行四边形。 (4)让学生同桌说说拼成的平行四边形与原来的梯形有什么联系? (4)让学生讨论说说梯形的面积是怎样计算的? 教师根据学生的讨论板书计算公式:梯形的面积=(上底+下底)×高÷2 如果用字母表示该是怎样的? 通过刚才的实验操作我们知道了什么?现在老师有些题来看看我们学得怎么样?三、组织练习1、学习第54页的例题。 教师出示例题。 2、做“练一练”第1题。 3、做“练一练”第2题。 4、选择题。 ①(2+5)×2÷2 ②(2+8)×5 ③(4+6)×5÷2 ④(2+8)×5÷2四、课堂小结我们这节课学习了什么?梯形面积的计算公式是怎样推导出来的?你觉得有话要对老师和同学们说吗?五、布置作业练习十一第1、2、3题。 学生交流说说几个平面图形的面积计算公式。 学生回忆三角形和平行四边形面积公式推导过程。 学生猜测。 学生交流。 (数方格、转化成我们学过的图形) 学生同桌进行实践操作,讨论交流。 学生在同桌合作交流的基础上进行班级内的交流。 学生讨论、交流演示。 请拼好的学生演示注意怎样旋转、怎样平移,说明成了什么样的图形? 得出可以用我们以前的剪、移、拼这些方法来推导出梯形的面积公式。 学生在教师演示的基础上讨论:从实验中的发现了什么? 引导学生观察比较得出:(板书)平行四边形的底=梯形的上底 + 下底 平行四边形的高=梯形的高 每个梯形的面积等于拼成的平行四边形的面积的一半 平行四边形的面积=底×高 梯形面积=(上底+下底)×高÷2 学生说说你看明白了什么? 学生解题。 学生交流说说是怎样想的? 让学生拿出自己准备的两个完全一样的梯形用同样的方法拼一拼,算一算,并把数据填入表中。(书本第53页) 怎样来求出这个横截面的面积的? 学生练习求出这个横截面的面积。指名一个学生板演。 集体订正,说说怎么想的? 生口答 选一题喜欢的做 指名三个人板演。 生口答,并说明理由。
一、说教材
1、说课内容:《梯形面积的计算》,这一课内容是在学生学会计算平行四边形、三角形面积的基础上进行教学的。
2、教学目标:
认知目标:使学生理解梯形面积计算公式,能正确计算梯形面积。
能力目标:通过操作观察比较发展学生的空间观念,学生经历梯形面积公式的探索过程,进一步感受转化的数学思想,进一步培养学生的观察、分析、概括、推理和解决实际问题的能力,
情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。
3、教学重、难点:
重点:使学生掌握梯形面积的计算公式。
难点:理解梯形面积计算公式的推导过程。
二、说教法与学法
1、根据几何图形教学的特点,我采用了以下几点教法:
①充分发挥学生的主体性,让学生通过课堂讨论、相互合作、实际操作等方式,自主探索、自主学习,使学生在完成任务的过程中不知不觉实现知识的迁移和融合;
②有目的地运用知识迁移的规律,引导学生进行观察、比较、分析、概括,培养学生的逻辑思维能力。
2、通过本节课的教学,使学生掌握一些基本的学法:
①让学生学会以旧引新,掌握并运用知识迁移进行学习的方法;
②让学生学会自主发现问题,分析问题,解决问题的方法。
三、说教学过程
新课程的基本理念就是要让学生“人人学有价值的数学”,强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型,并进行解释与应用的过程,激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索、解决数学问题。所以本课在教学思路上淡化教师教的痕迹,突出学生学的过程。从而充分体现了学生是学习的主人,教师只是学生学习的组织者、引导者与合作者。根据本课教学内容、学生的实际认知水平和新课程理念的指导下,本课的教学设计如下:
(一)、创设情境,引出问题。
1、课件出示“神七”发射实况
2、谈话引出课题
梯形的面积如何计算?引出学习的内容。〈这个环节的设计主要是通过创设“神七”发射的情境,在学习新课之前激发学生的学习兴趣,让学生怀着由好奇引起的理智上的震动进入认知活动方面的探索。〉
(二)、自主探究,合作交流
1、直接切入主题:对于梯形的面积你们打算怎样找到它的计算方法?(让学生说说自己的思路——把梯形转化为我们学过的图形。)
〈这一环节的设置意在激活学生思维,为学生提供创新机会,让学生主动参与,培养他们从小树立探寻知识的意识的良好学习习惯,变“要我学”为“我要学”,也为新课的展开起好前奏。〉
2、动手操作前让学生先对梯形进行分类。(可分为:一般梯形、等腰梯形和直角梯形)
3、自主探究,合作学习
学生小组讨论,动手操作。〈教师可有意识地参加到小组中去合作、辅导〉
4、分小组展示汇报,教师深化点拔。
教师板演推导过程。
5、引导学生用字母表示公式:s=(a+b)×h÷2
6、应用公式,尝试计算梯形面积(出示一个基本图形让学生计算)
〈这一环节意在通过让学生拼一拼、看一看、想一想、做一做,让学生主动参与到数学活动中,亲自去体验,让学生运用自己已有的知识,大胆提出假想,共同探讨,互相验证,更强烈地激发学生探究学习的兴趣,更全面、更方便地揭示新旧知识之间的联系。这种让学生在活动中发现、活动中体验、活动中发散、活动中发展的过程,真真正正地体现了以人的发展为本的教育理念。〉
(三)、学以致用,解决问题
1、学习例3
(1)、借助教具演示,理解“横截面”的含义。
(2)、弄清渠口、渠底、渠深各是梯形的什么?
(3)、学生尝试计算横截面积。
〈巩固新知是课堂教学中不可缺少的一个过程,这一环节是为了将学生的学习积极性再次推向高潮,能更好地运用公式计算梯形面积,从中培养了学生解决简单实际问题的能力。〉
(四)、应用深化,巩固练习:
1、做一做:请两名学生板演。
2、课件出示练习题。
(通过练习,加深学生对知识的理解,掌握数学知识,形成技能,提高学生应用所学知识解决实际问题的能力和创新能力。)
(五)、总结,反思体验
回想这节课所学,说说自己有哪些收获?学生谈收获,谈学习方法,教师小结强调梯形面积公式的推导过程。
四、板书设计
板书的设计体现了教学内容的系统性和完整性,又做到了重点突出。
教学目的:
1、掌握梯形的面积计算公式,能正确地计算梯形的面积。
2、通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
教学重点:
正确地进行梯形面积的计算。
教学难点:
梯形面积公式的推导。
教学准备:
投影、小黑板、若干个梯形图片(其中有两个完全一样的。
教学过程:
一、导入新课
1、提问:我们学习过哪几种平面图形的面积计算?计算公式分别是什么?
2、你能说出平行四边形的面积公式是如何推导的吗?三角形的面积公式呢?
3、创设情境:
投影显示:
启发谈话:同学们能依照平行四边形和三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?(板书课题)
二、新课展开
1、操作探索
⑴拼一拼,让学生拿出自己准备的两个完全一样的梯形动手拼一拼。
提问:你拼成了什么图形,怎样拼的?演示一遍。
⑵看一看,观察拼成的平行四边形。
提问:你发现拼成的平行四边形和梯形之间的关系了吗?
出示小黑板:
拼成的平行四边形的底等于(),平行四边形的高等于(),每个梯形的面积等于拼成的平行四边形面积的。()。
⑶想一想:梯形的面积怎样计算?
学生讨论,指名回答,师板书。
梯形的面积=(上底+下底)×高÷2
师:(上底+下底)表示什么?为什么要除以2?
⑷做一做:计算“前面出示的梯形”的面积。
2、扩散思维
师:如果我们手中只有一个梯形,你们能不能自己动脑想出别的计算方法推导它的公式?下面小组讨论。分组汇报:
生1:做对角线,把梯形分割成两个三角形,如下图⑴:
生2:从上底的一个顶点做另一腰的平行线,把梯形分割成一个平行四边形和一个三角形。如上图⑵。
生3:从上底的两个顶点作下底的垂线,把梯形分割成一个长方形和两个三角形,如上图⑶。
师:同学们真聪明,想出了好多种方法,推导出了梯形的面积计算公式,但不管采取何种方法都可以得出梯形的面积是“上底与下底的和乘以高再除以2。”
3、抽象概括
师:如果用s表示梯形的面积,用a、b和h分别表示梯形的上、下底和高,那么梯形的面积你会表示吗?
生:s=(a+b)h÷2
4、反馈练习
完成课本p81做一做(一人板演)
三、应用深化
出示例子:一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米,它的横截面的面积是多少平方米?
解释:举例说明“横截面”的含义。学生尝试计算:
(2.8+1.4)×1.2÷2
=4.2×1.2÷2
=5.04÷2
=2.52(平方米)
答:它的横截面的面积是2.52平方米。
反馈练习:完成p82第1题
四、巩固练习:p82第2题
五、全课小结
六、作业:p82第3、4题
教学内容:教科书第80~81页的内容,完成第81页上”做一做“和练习十九的第1~4题。
教学目的:
1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确地计算梯形的面积。
2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
教具准备:
1、小黑板上画下面复习题中的两个三角形图和教科书第80页上面的插图。
2、用厚纸做两个完全一样的梯形,其中一个梯形涂成红色。
3、学生将教科书第147页上面的两个梯形剪下来。
教学过程:
一、复习。
出示三角形图。
问:三角形的面积怎样求?
这个三角形的面积是多少?
三角形的面积计算公式我们是怎样推导出来的?
怎样用两个完全一样的三角形拼出一个平行四边形?(让一个学生到黑板前拼一拼。教师再边说边演示用两个完全一样的三角形拼成一个平行四边形的过程)
师:前面我们学习了平行四边形面积和三角形面积的计算,下面我们继续学习梯形面积的计算。(板书:梯形面积的计算)
二、新课。
1.教学梯形面积的计算公式。
出示教科书第80页上面的梯形图。
问:这个图形是什么形?(梯形)
师:今天我们要学习梯形面积的计算。刚才我们回忆了三角形面积计算公式的推导过程。
问:谁能依照三角形面积公式的推导过程,把梯形也转化成已学过的图形?(让学生拿出准备好的两个完全一样的梯形,每人都拼一拼,摆一摆。然后让一个学生到黑板前摆一摆。)
教师拿出两个完全一样的梯形(一个涂成红色),边说边演示:先把两个梯形重叠,把红色的梯形放在上面,以梯形右下角的顶点为中心,把红色的梯形旋转180度,再把红色的梯形的左边沿着白色的梯形的右边向上移动,使红色梯形的上底和白色梯形的下底同在三条直线上。然后,再带学生一起拼摆。
问:两个完全一样的梯形,经过旋转、平移,两个梯形组成了一个新的图形,是什么形?(平行四边形)
两个完全一样的梯形拼成了一个平行四边形,这个平行四边形的面积和其中一个梯形的面积有什么关系?(梯形的面积是平行四边形面积的一半)
平行四边形的底等于什么?(等于梯形的上底、下底之和)
平行四边形的高和梯形的高有什么关系?(相等)
平行四边形的面积怎样算?(它的底等于3+5=8,高是4,所以平行四边形的面积是32平方厘米)
一个梯形的面积怎样算?(提示学生回答,
教师板书:(3+5)×4÷2
=8×4÷2
=32÷2
=16(平方厘米)
师:下面我们一起来梯形的面积计算公式。刚才我们已经看到梯形的面积是平行四边形面积的一半,平行四边形的面积是怎样算的?(底×高)
问:在这里平行四边形的底是什么?(是梯形的上底和下底之和)
平行四边形的高是什么?(就是梯形的高)
板书:
平行四边形的面积=(上底+下底)×高
梯形的面积=(上底+下底)×高÷2
如果用S表示梯形的面积,用a、b、h分别表示梯形的上底、下底和高,那么梯形的面积计算公式就是:
S=(a+b)×h÷2
问:为什么梯形面积的计算公式中要除以2?(提问学生重申说明:我们学习梯形面积的计算方法,是把梯形转化成了一个平行四边形。而由两个梯形组成的平行四边形的底正是梯形的上底加下底之和,平行四边形的高和梯形的高相等,所以平行四边形的面积就等于上底加下底再乘以高,梯形的面积就等于上底加下底的和乘以高再除以2。)
2.应用出的梯形面积公式计算梯形面积。
(1)出示第81页例题。
指名读题,教师出示水渠的教具,再指出它的横截面,让学生看清它的横截面是一个梯形。再让学生看书。
问:这个梯形的上底是多少?下底呢?
这个梯形的高是多少?
梯形的面积计算公式是什么?怎样列式计算?(学生口述,教师板书)
(2)完成教科书第81页”做一做“中的题目。学生独立计算(说明:四边形中互相平行的一组对边,就分别是梯形的上底和下底。
三、巩固练习。
练习十九第1、2题。
四、作业。
练习十九第3、4题。
课后:
教学内容:
梯形面积的计算
教学目标:
1、使学生理解并掌握梯形面积的计算公式,并能正确计算出梯形面积。
2、通过梯形面积计算公式的推导过程,培养学生的实际操作能力和抽象概括能力,发展学生的空间观念。
3、结合教学,使学生受到唯物辩证观的启蒙教育,知道事物是相互联系的、变化的。在一定条件下可以转化。懂得用运动、联系的观点去观察、研究事物。
教学重点、难点和关键:
教学重点:
梯形面积的计算公式。教学难点:梯形面积计算公式的推导过程。教学关键:通过操作实践,将梯形转化为平行四边形,探索梯形与拼成的平行四边形的关系。
教具、学具准备:
教师准备多媒体课件、学生备用梯形硬纸片。
教学过程:
一、复习引入:
1、复习:
同学们会计算哪些图形的面积?
计算下列图形的面积:多媒体出示。
2、引入:
屏幕出现梯形,问:这是什么图形,图上告诉了什么?它的面积是多少?同学们还不会计算梯形的面积。这节课,老师就和同学们一起来研究梯形面积的计算方法。
3、回忆旧知
我们在学习平行四边形面积时,是怎样推导出平行四边形面积公式的?(多媒体课件演示)
我们在学习三角形面积时,又是怎样推导出三角形面积计算公式的?(课件演示)
二、探索解决问题办法,并尝试转化
1、引导学生提出解决问题方案
我们在学习平行四边形和三角形面积时,采用了割补的方法、拼摆的方法,把要研究的新图形转化为已经会计算面积的图形,再利用已学过的图形推导出新图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?
你准备用什么方法把梯形转化为我们学过的图形?
2、学生尝试转化
刚才同学提出了用割补的方法、用拼摆的方法。那么,怎样来割补呢?
学生上台演示后,教师指出:由于梯形的不规划,刚才的同学没有转化成功,其实是可以用割补的方法来转化的,请大家看一看:多媒体演示割补转化。
那么,用拼摆的方法呢,你准备怎样来拼?
学生上台演示。
3、学生操作、实施转化
学生以四人小组为单位,拼摆梯形。
请同学们告诉老师:你用两个完全一样的梯形拼成了一个什么图形?
谁来说一说,你是怎样拼的?多媒体课件演示。
三、观察图形,推导公式:
1、观察
同学们把梯形转化成我们学过的平行四边形。我们观察一下:拼成的平行四边形与原来的梯形有什么关系?
它们的底、高和面积,大小怎样呢?小组讨论。
学生总结汇报后多媒体课件演示。
2、计算梯形面积
平行四边形的面积会算吗,这个梯形的面积应该怎样计算?同桌讨论计算方法。算式是什么?
算式中3加5的和求的是什么?乘以4得到什么?再除以2呢?为什么要除以2?
计算面积,学生口述,教师板书。
3、推导梯形面积公式
算式中的3、5、4分别表示梯形的什么,想一想梯形面积的计算方法是什么?
用字母表示梯形面积公式
阅读教材,加深理解
四、应用公式计算梯形面积
1、基本练习:
计算下面梯形面积
2、教学例题
出示例题并理解题意。
计算面积,一人板演,全班齐练。
3、判断题
4、抢答题
5、测量并计算
五、总结课堂
《梯形的面积》的教学设计及反思
教学创意及反思:《梯形的面积》这一课,在探索活动中学生借助知识的'迁移,主动提出了“把梯形转化成学过的图形,并比较转化前后图形的面积”思考问题,主动思考,把一个新的图形面积的计算,转化为已学过的图形面积的计算,从而使问题得到解决。同时将解决生活实际问题转化成求梯形面积的数学问题,呈现多种转化的方法,能够丰富学生对图形的认识,加深对几何基本概念的理解,发展学生的空间观念,提高空间推理和解决问题的能力。
本节微课我努力在教学设计、教学行为语言、教学的展示上突出学习的双向性,避免纯粹的讲解,尝试做到“生”“屏”互动。具体有以下创新点:
一是教师放手让学生自己利用前面的学习经验,主动发现和提出数学问题,思考解决问题的方法,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。
二是教师依据学生的心理特点,创设了请学生帮老师解决如何比较车窗玻璃大小的问题以及课后的作业求堤坝横截面的面积,这样做不仅有效提出了数学问题,同时还激发了学生求知的愿望。做到了《标准》对于情境的创设“要联系学生的生活实际”的要求。使学生切实并切身地体会到了数学与生活的密切联系,真正体现了数学“于生活,回归于生活”的思想。
三是教师在微课的环节和问题设计中注重培养学生的猜测推理、操作探究、归纳总结及自主学习的能力,使微课起到吸引学生,指导学习,提升效果的作用。
介绍:在设计和制作中我努力做到“生”“屏”互动,产生双向学习的效应。能生动形象地展示梯形面积计算公式的探究过程,让学生充分地经历图形转化、想象的思考过程,积累活动经验,观察分析梯形转化前后图形面积及图形各要素之间的关系,推导出梯形面积的计算方法,深入理解梯形面积的计算公式。
应用情况:本节微课应用于义务教育小学数学北师大版五年级学生,本课内容为梯形的面积计算,讲课中教师能切合五年级学生年龄、学情特点、学科特点以及学段特点,应用生动形象的提问、对话、操作、演示等教学方法,让学生在独立思考,自主探究的过程中经历了猜测推理、操作探究、归纳总结的数学学习过程,在数学思想的形成和学习方法的提高上得到了培养,实现了新课标所提出的四基四能的要求。教学过程深入浅出,课堂氛围生动有趣。
一、教学内容:
五年级上册第88页《梯形的面积》
二、教学目标:
1、知识与技能:运用转化的数学思想,用多种方法探索并掌握梯形面积公式,能解决相关的问题,综合了解平面图形的内在联系。
2、过程与方法:在观察、推理、归纳的能力中提高学生的动手能力和知识迁移能力,体会转化思想的价值。
3、情感态度价值:进一步积累解决问题的经验,增强新图形面积研究的策略意识,获得成功体验,提高学习自信心。
三、教学重难点
教学重点:
探索并掌握梯形面积是本节课的重点
教学难点:
理解梯形面积计算公式的推导过程是本课的难点。
四、教学过程:
(一)复习旧知
出示(点)展开想象引到(线段)又通过想象引到互相垂直的两条线段。
同学们看这个图形,你会想到什么?(平面图形的底和高)想象这是什么图形的底和高,用工具在作业纸上将想象图形的另一部分补充完整,并在图下写出你所知图形的面积计算公式及字母表达式。
学生汇报时板书所学图形的图片及面积公式,回忆三角形和平行四边形的面积推导过程,引出转化的数学思想。在学生汇报梯形引出课题,并板书课题。
【设计意图:本环节由点开始学生就展开想象,在兴趣盎然的状态中打开了思维,轻松自然的引出各种已学平面图形的面积,渗透了转化的数学思想,即复习了旧知,又引出了新知,而且培养了学生以发展的眼光看数学,逐步建构自己知识体系的能力。】
(二)探究新知
联系已学图形面积计算公式,猜一猜梯形的面积计算公式可能是怎样的。基于平行四边形面积和三角形面积都与底和高有关,学生可以大胆猜测,然后探究验证。桌上的学具超市里放有直角梯形、一般梯形等若干个,有完全一样的,也有不一样的。然后分组探究。具体做法:
(1)自选学具。(每个小组发如下梯形图片和探究表各一份)
(2)提出要求:
①做一做:利用手中的学具,选择你所需要的梯形,或拼、或剪…转化成一个以前我们所学的图形。
②想一想:可以转化成什么图形?所转化成的图形与原来梯形有什么联系?
③说一说:你发现了什么,并尝试推导梯形的面积计算公式。
(4)小组合作,操作、观察、交流、填表,教师参与讨论。
【设计意图:此环节为学生创设了一个广阔的天空,顺其天性,自然调动已有的数学策略,突破教材以导为主的限制,以学生活动为主。凡是学生能想到、做到、说到的教师不限制、不替代、不暗示,为学生提供了一个充分发挥才智自己想办法解决问题的思维空间,在这里学生可以按照自己的想法任意剪拼一个梯形,摆拼两个梯形,使学生通过尝试——失败——成功的亲身体验,主动发现公式,注重了学生推理能力的培养,从而有效地突出本节的重点,突破本节的难点。】
(4)全班交流汇报。(教师根据学生的回答借助课件演示)
a、学生可能从以上梯形中选择两个完全相同的梯形,拼成一个平行四边形或者一个长方形。他们可能得出以下结论:两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底等于梯形上底和下底的和,高等于梯形的高。每个梯形的面积等于拼成的平行四边形面积的一半。学生还可能会有以下做法。
b、沿梯形的对角线剪开分成两个三角形。
c、把一个梯形剪成一个平行四边形和一个三角形。
d、沿等腰梯形的一个顶点做高,剪拼成一个长方形。
e、沿梯形中位线的两端点分别向下做高,剪拼成一个长方形。
f、从梯形的两腰中点的连线将梯形剪开拼成一个平行四边形。
对学生以上的做法教师给予充分的肯定和表扬。只要学生能把以上意思基本说出来,再通过小组之间的交流、互补,使结论更加完善。
(其中第一种方法重点解决,其他方法学生汇报几种算几种不做一一详解。)
(5)归纳公式。根据探究表的结论,让学生自己归纳出梯形面积的计算公式。
梯形的面积=(上底+下底)×高÷2
如果用字母S表示面积,用a和b表示梯形的上底和下底,用h表示高,那么上面的公式用字母表示:
S=(a+b)h÷2
【设计意图:对多种方法各抒己见,在交流的过程中互补知识缺陷,学生在猜想—操作—争辩—演示—叛变—互补的过程中深刻的理解梯形面积的推导,纠正学生的错误猜想,巩固正确的推导思路。】
(五)深化巩固
1、尝试计算
a、计算一个一般梯形的面积。
b、梯形面积计算帮我们完成很多伟大的壮举,介绍三峡水电站和南水北调工程。出示例题:
(1)我国三峡水电站大坝的横截面的一部分是梯形(如下图),求它的面积。
(2)一条新挖的水渠,横截面是梯形(如图)。渠口宽2.8米,渠底宽1.4米,渠深1.2米。它的横截面积是多少平方米?
借助模型和课件让学生了解横截面、渠底、渠高等词义。在两道题中任选一道解答。
【设计意图:运用公式是课堂教学中不可缺少的一个过程,这一环节通过练习既能巩固公式,又有利于学生灵活运用所学知识解决生活中的数学问题,使学生体会到数学来源于生活,又应用于生活,同时感受祖国伟大的壮举,从而产生爱国主义情怀。】
2、学生观察图形,解决以下问题:梯形的上底缩小到一点时,梯形转化成什么图形?这是面积公式怎么变化?当梯形的上底增大到与下底相等时,梯形转化成什么图形?这时面积公式怎么变化?当梯形的上底增大到与下底相等,并且两腰与下底垂直时,梯形就变成什么图形?面积公式怎么变化?从这几个公式的联系,可发现什么规律?
【设计意图:本环节是为了将学生的学习积极性再次推向高潮,通过运用梯形面积公式计算其他图形,让学生体会知识结构的内在联系,从中培养了学生构建知识系统的能力和知识迁移及综合整理的能力。】
3、总结,反思体验
回想这节课所学,说说自己有哪些得失?
【设计意图:这个环节主要是再次把学习的主动权交给学生。让学生在回忆过程中更清晰地认识到这节课到底学了什么,通过谈感想,谈收获,学生间互相补充,共同完善,有利于学生学习能力的培养,同时体验学习的乐趣和成功的快乐。】
五、教后反思:
五年级下册88页《梯形的面积》是多边形面积计算中的一部分,它是在学生已经认识了梯形的特征,并且学会平行四边形、三角形的面积计算的基础上进行教学的。。本课通过出示学具超市—小组合作探究—展示、交流—引导学生自己总结公式—应用梯形面积的计算公式解决实际问题—构建知识体系完成教学目标。梯形的面积计算的推导方法是对前面所学的几种图形面积计算公式推导方法的拓展和延伸。通过本课时的学习,能加深学生对图形特征以及各种图形之间的内在联系的认识,领会转化的数学思想,为今后学好几何图形打下坚实的基础。由于学生已经经历了平行四边形和三角形的面积计算公式的推导过程,他们完全有能力利用的所学的方法进行梯形的面积计算公式的推导;因此,我大胆地让学生自己完成这一探索过程。对于个别学困生,我则通过参与他们的讨论,引导他们自己去发现问题,解决问题。提供给学生几种不同形状的梯形去探究,目的是让学生经历从特殊到一般的归纳过程。有了操作和讨论作铺垫,公式的推导也就水到渠成了,所以,让他们自己归纳公式。在“操作、观察、分析、讨论、概括、归纳”这一系列的数学活动中,学生亲历了一个知识再创造的过程,体验到成功的喜悦。具体操作时,因我理念不到位,素质有待提高,有成功的地方,也有失败的环节。分析如下:
突出体现了两个亮点:
1、尊重学生的个性发展,允许学生在学具超市中任意选择不同的梯形,或拼摆、或割补成已学图形,让学生自己在操作的过程中去观察、探索、发现、领悟转化的数学思想,获取数学知识。
2、设计了一系列的探究活动、让学生在想、说、拼、议、评、等过程中复习旧知,学习新知。这些都有利于拓宽学生的思维空间,提高学生的动手操作能力和知识迁移能力。
在上课时也显示出几点缺陷:
1、学生汇报时我没有注意让学生对两个完全一样的梯形拼成了一个平行四边行作重点理解,因而在引导公式时学生理解有难度,我才又在投影下重合两个梯形,让学生体会梯形的上底与下底的和就是平行四边形的底。造成学生失败后再补救的局面。
2、公式的推导形式单一,造成这一现象源于学具准备不科学。或教师引导不到位。
3、学生用字母代数推导公式时,我不注意先设定图形的那一部分分别用哪个字母表示,而是直接让学生生硬的套用,显示出教师上课的随意性。
以上种种说明我的教学理念还很滞后,有待于更新、学习。
五年级数学上册梯形的面积练习题
1、可以把一个梯形分成两个形,也可以分成一个()形和一个()形。
2、梯形的上底长8厘米,下底长14厘米,高是上底的一半。梯形的。面积是()平方厘米。
3、两个完全一样的梯形拼成的一个平行四边形的面积是80平方厘米,高是5厘米,梯形的上底是7厘米,梯形的下底是()厘米。
4、一个梯形上下底的和是16米,高是7米,它的面积是()
5、判断下列各题,对的打√,错的打×
(1)两个面积一样的梯形一定可以拼成一个平行四边形()
(2)平行四边形的面积是梯形面积的两倍()
(3)计算一个梯形的面积,比武知道他的上下底和高()
(4)一个梯形两底的和是12米,高是10米,则它的面积是60平方米()
知识点:梯形面积计算公式的应用
6、一块梯形的麦田,上底是36米,下底是54米,高是40米,求这块麦田的面积。
7、已知梯形的面积是20平方分米,求阴影部分的面积。
8、有一块梯形花地,上底是8米,下底是10米,高是4.8米。已知每株花占地0.06平方米,这块地能种花多少株?
9、一个梯形的上底是12分米,高是8分米,面积是108平方分米。这个梯形的下底是多上分米?
教学内容:
教材95—96页梯形的面积及例3;第96页“做一做”;第98页练习二十一第6,7,8题。
教材分析:
本课试在学生认识了梯形的特征,掌握了长方形,正方形,平行四边形和三角形面积的计算,并形成了一定空间观念的基础上进行教学的,因此教材没有安排数方格的方法求梯形的面积,而是直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法,把梯形转化成我们已经学过的图形来计算它的面积,引导学生在主动参与探索的过程中,发现并掌握提醒的面积计算方法,让学生在学习的再创造过程中实现对新知识的意义的构建,解决新问题,获得新发展。
教材中多角度地推导出了梯形面积公式,并展示了三种方法:一是两个一样的梯形拼成一个平行四边形;二试把一个梯形剪成两个三角形;三是把梯形剪成一个平行四边形和一个三角形。通过学习能够提升学生的合作意识,培养学生多角度思考问题的能力。
教学目标:
知识与能力:
在探索活动中深刻体验和感悟梯形面积计算公式的推导过程,并能运用梯形的面积公式解决生活中的实际问题。
过程与方法:
通过动手操作,观察比较,发展学生的空间观念,并在动手操作的活动中,逐步培养学生归纳,推理和语言表达的能力。
情感,态度与价值观:进一步培养空间观念,不断发展空间想象力,体验数学再创造的乐趣,并获得个性化的发展。
教学重难点及突破:
重点:理解并掌握梯形面积公式的推导过程,会计算梯形的面积。
难点:理解梯形面积公式的推导过程。
教学设想:
本课教学由学生谈对梯形的认识和讲述平行四边形,三角形面积公式的推导方法引� 在新课中,教师要向学生讲明探究梯形的面积的方法及合作的要求,可以通过多媒体展示出来,让学生完全按要求完成学习。接下来为学生的探究过程,学生利用自己准备好的梯形,通过分割法和组合法对图形进行重组,并用文字写出梯形面积的计算方法,然后在交流中找到最为简便的公式,并在教师的引导下写出字母公式。学生完成公式的推导之后要独立完成例3及“做一做”,在练习的同时提高学生对公式的理解和认识。除此之外,为了巩固学生所学知识,还要多收集一些习题,开拓学生的视野,提高学生的能力。
教学准备:
教师准备:
多媒体课件,练习题
学生准备:
前置作业,梯形若干个,彩笔,练习本。
教学设计:
一,复习旧知
师谈话:说一说你对梯形的了解。
学生自由发言,教师进行评价。
生1:梯形有上底,下底和高。
生2:梯形有等腰梯形和直角梯形。
……
师接着谈话:同学们,我们前面学习的平行四边形和三角形的面积公式是怎样推导出来的?
学生举手,教师指名回答。学生发言预设:
生1:平行四边形的面积试用割补法把它变成与它面积相等的长方形,由长方形面积推到出来的。
生2:三角形的面积是把两个完全相同的三角形拼成一个平行四边形,因为三角形的面积是这个平行四边形面积的一半,所以用平行四边形面积除以2,得到的就是三角形的面积。
……
师小结:同学们能不能用学过的这些方法设计一种推导方案,推导出梯形的面积计算公式呢?
板书课题:梯形的面积。
设计意图:通过师生交流揭示课题,提示学生可以把已学过的学习方法运用到新的学习情境中,为学生提供了创新的机会,变“要我学”为“我要学”,为下面的学习作好了铺垫。
二,探索新知
1,方法迁移,自主探究梯形的面积公式。
师谈话:下面请同学们运用我们学习的平行四边形和三角形的面积公式的方法推导一下梯形的面积公式吧!要看清要求,在小组研究中要分好工。
多媒体出示自学要求:
(1)做一做:利用手中准备好的梯形纸片,或拼或剪,转化成一个以前我们学过的图形。
(2)想一想:可以转化成什么图形?与梯形有哪些联系?
(3)说一说:你发现了什么?试着推导梯形面积的计算公式。
(4)瑶以小组为单位,进行合作学习。
学生小组探究梯形面积的计算方法,教师参与学生的交流。
学生汇报结果,教师评价并板书。学生汇报预设:
生1:我们组把梯形剪成一个平行四边形与一个三角形(如下图),梯形的面积等于一个平行四边形的面积与一个三角形面积之和,平行四边形的面积等于梯形的上底乘高,三角形的高就是梯形的高,三角形的底是梯形的下底减去上底,分别求出面积再相加,梯形的面积=上底×高+(下底—上底)×高÷2。
生2:我们小组把梯形剪成两个三角形(如下图),小三角形的底试梯形的上底,大三角形是梯形的`下底,高是一样的,所以梯形的面积=上底×高÷2+下底×高÷2
生3:我们组用两个完全一样的梯形拼成一个平行四边形(如下图),得出拼成的平行四边形的面积试梯形面积的2倍,平行四边形的高与梯形的高相等,平行四边形的底等于梯形的上底加下底之和,从而推出梯形面积=(上底+下底)×高÷2。
师:大家通过探究推导出了梯形面积的计算公式,从不同的角度去想,推导出的公式也不相同,请同学们观察一下三个公式,哪一个最简便?
生齐:第三种。
师:通过我们多角度的实验,可以推导出梯形面积公式=(上底+下底)×高÷2(师板书)。如果上底用子母a表示,下底用字母b表示,高用字母h表示,那么梯形面积公式用字母公式可以表示为什么呢?
学生举手,教师指名回答。
S=(a+b)×h÷2
设计意图:在这个环节中,教师防守让学生去实践,去探索,学生在研究梯形面积的过程中,不仅掌握了梯形的面积计算公式,更有力地促进了学生思维能力的发展和问题策略意识的形成。
2,教学例3
出示例3
学生独立完成,教师对学生进行指导。
学生完成后全班交流,教师进行方法指导。
学生发言预设:从图中可知大坝的上底是36m,下底是120m,高是135m,利用梯形的面积计算公式S=(a+b)h÷2可求出大坝的面积是(36+120)×135÷2=10530(m2)
3,完成教材96页“做一做”
请你说一说“做一做”的习题所表达的意思。
学生举手,教师指名回答。
学生独立完成习题,教师对学困生进行指导。
学生汇报,教师评价。
设计意图:通过学生阐述解题过程,能够深化学生对公式的理解。
三,巩固应用
(一)预习答疑
1,完成“旧知链接”习题
学生回答对梯形的认识及研究平行四边形,三角形面积的方法。
说明:通过复习这些知识点,让学生加深对平行四边形,三角形面积公式的推导过程的认识,为本课学生推导梯形面积公式奠定基础。
2,完成“新知速递”习题。
学生全班订正答案。
教师对方法进行小结。
(二)教材习题
1,练习二十一第6题
师提问:怎样计算梯形的面积?
学生举手,教师指名回答。
学生独立完成习题,教师对学困生进行指导。
学生汇报,全班评议。
2,练习二十一第7题
师:怎样列方程解决问题?
学生举手,教师指名回答。
学生独立完成练习,并全班汇报订正,教师进行方法小结。
(三)课堂作业
1,想一想,填一填。
两个完全相同的梯形可以拼成一个(),这个平行四边形的底等于(),这个平行四边形的高等于(),每个梯形的面积等于拼成的平行四边形面积的(),因为平行四边形的面积等于(),所以梯形的面积等于()。
2,计算下面梯形的面积。(单位:cm)
3,把一块平行四边形的铁片剪去一个角(如下图中的阴影部分,单位:cm),剩下部分的面积试多少平方厘米?
4,求下图阴影部分的面积
教学反思:
新的数学课程标准指出:教师不能只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在于教师对教材的把握。梯形的面积一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的,学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识进行教学,整个教学设计充分运用猜想,探索,验证等学习方式,给每个学生提供思考,表现,创造的机会,使他 针对本课教学设计主要有以下几点思考:
1,动手操作,培养探索能力。在推导梯形面积计算公式时,教学设计安排学生合作学习,防守让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生用过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形,再通过“拼,剪,割”的动手操作活动,看一看能转化成什么图形,然后引导学生思考讨论:转化的图形与原梯形有什么关系?通过学生自主探索的实践活动,让学生亲自参与面积公式的推导过程,真正做到“知其然,也知其所以然”,而且能让学生的思维能力,空间感受能力,动手操作能力都能得到锻炼和提高。
2,重视学生解决问题的能力的培养。在学生验证自己的想法是否正确时,瑶鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识,在此基础上归纳出梯形面积的计算方法。这种方式的学习,既能够使学生理解,掌握梯形的面积公式,同时又能够培养学生获取知识的能力。
教学目标
1.理解梯形面积公式的推导过程,会应用公式正确计算梯形的面积。
2.培养学生合作学习的能力。
3.继续渗透旋转、平移的数学思想。
教学重点
理解并掌握梯形面积公式的计算方法。
教学难点
理解梯形面积公式的推导过程。
教学过程
一、复习旧知
(一)求出下面图形的面积。
(二)回忆三角形面积公式推导过程(演示课件:拼摆三角形)
二、设疑引入
教师出示一个梯形和一个三角形(已标出底和高).这个梯形比三角形的面积大还
是小?相差多少呢?要想得到准确地结果该怎么办?
板书课题:
三、指导探索
(一)梯形面积公式的推导。
1.小组合作推导公式。
教师谈话:利用手里的学具,仿照求三角形面积的方法推导公式。
提纲:
(1)用两个完全一样的梯形可以拼成一个________________形。
(2)这个平行四边形的底等于____________________,高等于___________________.
(3)每个梯形的面积等于拼成的平行四边形面积的____________________.
(4)梯形的面积=____________________________.
2.演示课件:拼摆梯形
3.概括总结、归纳公式。
教师提问:
(1)(上底+下底)×高求的是什么?
(2)为什么要除以2?
教师板书:
梯形面积=(上底+下底)×高÷2
(二)教学例1.
例1.一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米。它
的横截面的面积是多少平方米?
1.教师提问:已知什么?求什么?怎样解答?
2.列式解答
(2.8+1.4)×1.2÷2
=4.2×1.2÷2
=2.52(平方米)
答:它的横截面的面积是2.52平方米。
四、巩固练习
(一)计算下面梯形的面积。
(二)动手测量学具(梯形)的相关数据,并计算梯形学具的面积。
(三)下面是一座水电站拦河坝的横截面图,求它的面积。
教学目标
(1)理解梯形面积公式的推导过程,会应用公式正确计算梯形的面积。
(2)培养学生合作学习的能力。
(3)继续渗透旋转、平移的数学思想。
教学建议
教材分析
梯形面积的计算是在学生学会梯形的特征以及学会计算平行四边形、三角形的面积的基础上进行教学的。这部分知识是将来进一步学习计算组合图形面积和圆的面积计算的基础。
本小节内容共分为两个层次。第一层是推导梯形面积的计算公式;第二层是应用梯形面积的计算公式计算梯形面积,解决实际问题。
梯形面积公式的推导是应用平行四边形、三角形面积公式推导的思路,利用转化思想解决新问题。通过观察新、旧图形的内在联系得出梯形面积的计算公式,再抽象出梯形面积的字母公式。本层次的重点是:使学生理解梯形面积公式的推导过程。难点是:理解面积公式的推导过程。
例1的重点是应用梯形面积公式计算面积。难点在于把题目中所给的已知条件与梯形的各部分名称一一对应起来。
教法建议
教学梯形面积的计算之前,可以先回忆一下三角形面积公式的推导过程,(三角形面积公式及其推导过程与梯形有许多相似之处)。讲解梯形面积公式的推导过程要注意引导学生根据三角形面积公式推导过程的思路展开联想,这样进行迁移,有了前面的基础,学生用两个梯形拼成平行四边形并不困难。
在推导梯形面积公式的过程中观察、对比新旧图形的联系很重要,为了便于发挥学生的主体性,增进学生交流,教师可把梯形与转化后的平行四边形的关系印成小篇子,由学生讨论后小组合作完成,由学生自己找出梯形面积的计算公式和字母公式。
在应用梯形面积计算公式中,教师尽量选择贴近生活实际的事例由学生解答,如计算篮球场中梯形的面积,计算梯形机翼模型的面积,计算梯形钢管堆中的钢管的根数等等,使学生体会到学习数学的价值与乐趣。
在设计练习时注意层次,使学生从练习中体会到题题具有挑战性。如变换梯形的摆放位置和角度,先测量再计算梯形面积,结合直角梯形,面积单位换算等旧知识进行综合练习,使学生既巩固旧知识又深化新知。
第九册梯形面积的计算(教学目标 和建议)
教学内容:
教科书88页和89页
教学目标:
(1)探究梯形面积计算,理解公式的推 导过程,会应用公式正确计算梯形的面积。
(2)培养学生合作学习的能力以及动手操作能力。
(3)进一步渗透旋转、平移的数学思想。
教学重点:理解并掌握梯形面积公式的计算方法。
教学难点:理解梯形面积公式的推导过程。
教具准备:多媒体课件
教学过程:
一、创设情境,引出问题
教师用多媒体课出示:王大爷家有一块果园地(梯形地上底300米,下底200米,高100米),如果每棵桃树占地10平方米,那么王大爷家这块果园地里一共有多少棵桃树?
问:同学们这块地是什么图形啊?
生1:这是一个梯形。
问:要想求果园地里一共有多少棵桃树,必须先知道什么呢?
生2:必须先知道梯形的面积。
师:今天我们这节课就来研究“梯形面积的计算”(板书)。
二、探究新知。
(1)、铺垫孕伏。
组织学生回忆平行四边形、三角形面积公式推导的方法及过程,
重点突出旋转、平移、割补的数学思想。
(2)、协作研讨,探求方法
1、教师把学生分成若干个小组,每个小组4至6名学生,每个小组发给若干张梯形纸(上底3厘米,下底5厘米,高4厘米)。
师:谁能介绍一下这个梯形?
生3:这个梯形的上底是3厘米,下底是5厘米,高是4厘米。
师:下面我们各小组利用手中的工具来探究梯形面积的计算公式,看哪个小组的方法最多!哪个小组协作能力最强!
2、教师用课件出示探究要注意的事项,让学生进行小组合作,动手操作,探究梯形面积的计算。(教师注意合作方法的指导,要求同学之间互相交流、合作,把梯形面积的计算方法小组汇报给同学听,把计算过程写在本子上,最后推荐代表进行汇报。每一次汇报,教师利用多媒体演示、小结。)
生4: (3+5)42=16(平方厘米)
生5: 542+342=16(平方厘米)
生6: (5+3)42=16(平方厘米)
生7: (5-3)42+34=16(平方厘米)
生8: (5+3)(42)=16(平方厘米)
生9: (3+5)24=16(平方厘米)
生10: 34+(5-3)42=16(平方厘米)
师生交流、点评……
3、总结规律,渗透数学思想方法
师:这些方法有什么共同的地方吗?
生11:结果都是16平方厘米。
生12:每种方法的计算过程中都用到3、4、5、2这几个数字。
师:这几个数字和梯形有什么关系吗?
生13:梯形的上底是3厘米,下底是5厘米,高是4厘米。
师:现在谁能猜一猜梯形的面积计算公式是怎样的?
生14:梯形的面积=(上底+下底)高2
师:如果用字母S表示梯形的面积,a表示梯形的上底,b表示梯形的下底,h表示梯形的`高,那么梯形的面积计算公式用字母怎样表示?
生15:S=(a+b)h2
三、应用知识,解决问题
1、回到课堂初提出的问题,让学生帮王大爷计算果园地里一共有多少棵桃树。
生16:(300+200)100210=2500(棵)
2、学生完成基础变式练习:“做一做”和练习十八的1~3题。
3、提高能力练习:共同探讨练习十八的第四题。
四、知识小结,体验学习的快乐!
教学反思:
新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他 这节课上完以后我觉得有成功,也有一些不足:
一、动手操作,培养探索能力
在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生说说可以把梯形转化成已经学过的什么图形?用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。
二、发散验证培养解决问题的能力
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。反思整个课堂教学过程,还是存在着一些问题。首先缺少学生之间的互动。数学课是数学活动的教学。这个活动不仅仅表现在学生的动手操作上,更重要的还应该表现在师生之间、学生之间的多向互动上。反思本课的教学,在学生向全班汇报了转化过程及计算方法后,急于展示自己学习成果的同学与老师展开了一对一的交流,老师忽视了对其他学生的关注。这样不利于培养了学生与学生之间提问题的能力与意识,不利于形成了生生交流的良好的课堂学习氛围,再有这节课在把梯形转化成各种三角形、平行四边形方法很多,学生的很多想法出乎我的预设,问题就是在黑板上展示多种方案中,从原先的设计中,是将重点放在“用两个完全一样的梯形拼成一个平行四边形”的方案上,并让学生多多互动交流;然而,从试教的实际效果上看,学生还是最喜欢的并不是这种方案。那么,到底将学生全员参与的活动安排在哪里呢?
我觉得课堂中反问和追问的艺术很值得研究,从教学语言可以窥出一个教师调控课堂有效展开的功力,然而,我却发现现在的我却在教学语言上显得贫瘠繁琐,尤其是这些空间图形的课堂。教学活动是否有效展开往往 纵观整堂课,我一直在思考:如何才能让活动探究得更加有效?活动的时间如何控制?这些还是我要亟待改造的地方。
梯形的面积计算教学反思
《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。在教学中我充分利用原有的知识,“猜想”、探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他
回顾整节课有以下几个方面值得反思:
首先:在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形?再通过“拼、剪、割”的动手操作活动,看一看能转化成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,但在动手操作时,学生分工不明确,耽误很多时间,并没有达到预期的教学效果。课前虽有美好的'设想,但教学的对策考虑不周。没有用好探究的素材,没有充分发挥学生的学习积极性。没有让学生体验失败的顿挫,也就品尝不到成功的喜悦。没有让学生享受灵动的课堂。
第二、课前的准备工作不够。如板书的安排应有利于学生归纳、发现。
第三、联系生活部分较少,没有使数学来源于生活,并应用与生活,失去了数学的应用价值。
一、教学内容分析
《梯形的面积》是冀教版小学数学五年级第六单元第四课时的教学内容。本课是在学习了平行四边形和三角形面积计算公式探索过程的基础上进行教学的。因此教材没有给出操作的材料和方法,而是直接给出一个梯形,提出“小组合用,探索梯形面积的计算方法”的要求,给学生提供小组合作的机会和更大的探索的空间,这一内容为后继教学“组合图形面积计算”作必要的铺垫。
二、教学对象分析
学生已经认识了梯形,掌握了长方形、正方形、平行四边形和三角形面积的计算方法,同时学生已经有了平行四边形面积、三角形面积公式的探索过程的活动经验,了解了转化的数学思想,对于用两个完全一样的梯形拼成一个平行四边形,通过小组讨论及课前铺垫应该能够得能顺利完成。但对于选取从两腰的中点进行剪切、旋转的割补法学生未必能够想到,这应该是普遍存在的困难。
三、教学目标及教学重难点
(一)教学目标
1.知识与技能:经历小组合作探索梯形面积公式、交流及应用的过程;掌握梯形面积的计算公式。
2.数学思考:在参与操作、观察、实践等数学活动中,学会独立思考,能清晰表达自己的'想法,体会转化的数学思想。
3.问题解决:会利用梯形面积的计算公式解决实际生活问题;学会与他人合作交流;体验解决问题方法的多样性,发展创新意识。
4.情感与态度:获得小组合作学习的愉快体验,培养学生的团队精神,感受面积公式推导过程的条理性。
(二)教学重点:将梯形转化成学过的图形,分析、推导梯形面积计算公式。
(三)教学难点:理解用一个梯形割补成长方形的推导方法。
四、教学方法、过程
针对学生的知识基础主要采用小组合作的学习方式,探索两个完全一样的梯形可以拼成一个平行四边形,学生自主分析总结得出梯形面积的计算公式,同时课件辅助推导过程。另外,对于割补的方法,如果学生不能呈现教师要采用课件演示。
一、学情分析
学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。学生在知识、能力、情感、态度等方面存在着一定的差异,他们原有知识能力结构的不同导致他们对数学问题的理解也不同,从而出现解决问题的策略的个性化和多样化。
因此本节课在探索梯形面积的计算公式时,老师为学生提供一个充足的自主学习空间,启发学生利用自己已有知识和经验,自主进行探究活动,进而感受学数学的价值,并获得成功的体验,产生积极学习的动力。
二、教材分析
"梯形的面积计算"是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。由于在上述学习过程中,学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了"新旧转化"的数学思想方法,这些都为学生自主研究、探索"梯形的面积计算"这一新的学习任务创造了必要的条件,为他们实现个体意义上的数学"再创造"打下了良好的基础。
三、教学目标设计
1.使学生理解并掌握梯形的面积计算公式,能正确地应用公式进行计算。
2.通过动手操作使学生经历公式的推导过程,培养学生的迁移类推能力和抽象概括能力,将转化策略的教学融入到学生的“拼、剪、画、说”活动中,使学生领悟转化思想,感受事物之间是密切联系的,使学生能应用所学知识解决实际问题,发展学生的空间观念。
3.引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力,通过演示和操作,让学生在拼剪中感受数学知识的内在美,培养团队合作意识。
四、教学重点难点
教学重点
1.理解并掌握梯形的面积计算公式。
2.运用梯形的面积计算公式解决问题。
教学难点
梯形面积公式的推导过程。
五、教学策略设计
我在导学"梯形的面积计算"时,并没有沿袭以往的教学思路,而是立足于学生已有的数学现实与经验,
六、教学过程设计
教学环节一
一、汇报预习的成果
(预习单)1、你还记得平行四边形、三角形面积公式吗?它们是怎么推导出来的?
2、对于梯形,你们已经知道了什么?
3、利用你手中的梯形,动手折折、剪剪、拼拼,你还能发现什么?
4、如何推导梯形的面积计算公式?谈谈你的想法。
学生汇报前三个:
生1:我发现任何梯形都可以分成两个三角形。
生2:我发现任何梯形都可以分成一个三角形和一个平行四边形。
师:善于观察,勇于实践,大家才会有如此丰富的发现。这节课,我们将在此基础上进一步研究"梯形的面积计算"。
(揭示课题)
设计意图
引导自由操作,有利于学生在较为轻松的状态下激活原有的"数学活动经验",为随后有目的的尝试、实验和验证作好铺垫。
教学环节二
二、"假设--实验--验证",引导学生体验数学知识"再创造"的。过程。
师:汇报预习单第4个问题。如何推导梯形的面积计算公式?谈谈你的初步设想。
(学生分组交流。教师深入学生中倾听,并作必要的启发和引导)
生6:能不能像推导平行四边形面积公式那样,通过剪拼,将梯形也转化成已经学过的平面图形,如长方形、平行四边形或三角形,然后再来推导?
生7:可不可以像三角形那样,先合拼成一个大平行四边形,然后来推导?
生8:看看梯形的面积与已经学过的长方形、三角形及平行四边形等有什么联系,根据它们间的联系进行推导。
设计意图
交流对问题的初步设想,是准确把握学生已有数学现实的关键,也是实现"再创造"的开始。这对教师如何引导学生进行随后的"再创造"活动起着重要的作用。
教学环节
三、应用知识,自主探究
师:同学们是不是都有自己的想法了,想不想马上动手试试?
(学生独立或合作尝试转化。教师深入学生群体,听取意见,并对有困难的学生作必要的提示和启发)
教学环节四
设计意图
对数学材料实现"再创造",这不仅需要学生的独立思维,同时也需要组员间的相互启发以及教师的及时点拨与引导。也是上述教学过程中学生的"合作尝试"及教师的"个别指导"的意义。
四、汇报展示
师:不少同学已经成功地对自己的假设进行了验证,请向大家展示你们的研究思路与成果。
生1:我们组将两个完全一样的梯形拼合成一个平行四边形(见图1)。平行四边形的底相当于梯形上、下底的和,平行四边形的高相当于梯形的高。梯形的面积是拼成的平行四边形面积的一半,也即"梯形的面积=(上底+下底)×高÷2"。
师:能设法将新问题转化成已经学过的问题来解决,这本身就是一种创造。那么在这些方法中,你最欣赏哪一种,就请你借助手中的学具再次完成这一转化与推导过程,并在小组里进行交流。
设计意图:
引导学生及时交流,展示他们个性化的研究思路与成果,激发了他们成功的学习体验和进一步深入研究的积极愿望。
教学环节
五、在实践应用中拓展、延续数学知识的"再创造"。
师:(出示例题)请大家选择适合自己的面积计算公式求出梯形的面积。
(出示基本练习)测量数据,并计算出这些梯形的面积。
设计意图:
学生自由测量、计算并交流方法,教师对学生的学习过程作出即时评价和指导,鼓励学生对问题的不同理解及方法。
六、作业设计
师:学校决定在操场东侧宽10米的长方形空地上建造一些形状各异的梯形花坛。如果请你来设计,你觉得怎样设计比较合理?画出设计图,并预算出每一个花坛的占地面积。
(学生自由结合,分组进行构思、设计,并就占地面积进行计算与交流)
实践性练习又一次激发了学生"再创造"的热情,并为他们创造性地解决问题提供了机会,为提升他们的实践能力和创新品质营造了广阔的空间。
七、板书设计
梯形的面积
梯形的面积=(上底+下底)×高÷2转化
S梯形=(a+b)×h÷2(学生的方法展示)
八、预设效果
本堂课就学生来说的会在一次次思考和动手操作的过程中体会数学学习的乐趣。
九、课外知识的准备
了解多种转化的方法。
教学目标:
1、 使学生理解掌握梯形面积公式的推导,并能运用公式正确的进行计算
2、 通过引导学生操作和对图形的观察比较,发展学生的空间观念
3、 使学生进一步认识转化的数学思想方法,发展分析综合抽象概括等思维能力
教学重点:理解并掌握梯形面积公式,并会利用公式计算
教学难点:梯形面积公式的推导过程
教具:梯形纸板若干
学具:剪刀、梯形纸板若干
教学过程
一、 复习平等四边形、三角形面积公式和推导过程
出示一梯形
标出各部分名称
师:你会计算梯形的面积吗?生:会
求出梯形面积及为什么要用这一公式作为梯形面积公式
二、 新课
拿出准备好的梯形纸板 操作
师:试一试 梯形能否转化以学会的计算面积的图形
可自己思考 可小组共同操作 并把你的结论记录下来
(生操作 师参与其中)
汇报:边讲解边演示(可能会出现以下几种分法)
㈠、两个完全一样的梯形重合在一起经旋转和平移可拼成平行四边形
平行四边形=底×高
一个梯形=(上底+下底)×高÷2
㈡、只用一个梯形
①沿一条对角线可把一个梯形分成两个梯形
梯形面积=两个三角形面积之和
=下底×高÷2+上底×高÷2
②通过梯形上面一个顶点作梯形一腰平行线 可分成一个平行四边形和一个三角形
s梯=平行四边形面积+三角面积
=上底×高十(下底-上底)×高÷2
③沿梯形上底两顶点作两条高分成一个长方形和两个三角形
④梯形上下底对折 剪开?梯成平行四边形
s梯=(上底+下底)×高÷2
s梯=中位线×2×高÷2
反过来
⑤梯形上下底对析,两底角间对折拼成一个长方形(两层)
s梯=(上底+下底)÷2×(高÷2)×2
⑥通过梯形右腰中点作一腰平行线,得右边一个小三角形,再以小三角形上顶点为中心旋转拼成一个平行四边形
s梯=(上底+下底)÷2×高
⑦把梯形打开上顶点与右腰中点连接得一个小三角形把小三角形旋转成一个大三角形
s梯=(下底+上底)×高÷2
同学们找出了这么多种方法,真的很不错,但你知道为什么选用s梯=(上底+下底)×高÷2这个公式呢
拿一例说明 s梯=下底×高÷2+上底×高÷2
利用乘法分配律也可以得到s=(上底+下底)×高÷2
其它几个公式经过化简也可以得到这一公式,这个公式用字母怎样表示?
质疑:在操作中你遇到了什么困惑
小结:求梯形面积需什么条件
练习:1、求下面梯形面积(单位:厘米)
2、(如图):求梯形的高(单位:厘米)
3、猜:s梯=54平方厘米 时上、下底高可能是多少厘米?
4、一等腰梯形腰长8厘米,高6厘米,这梯形周长比腰多20厘米求梯形面积?
一、学情分析
学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。学生在知识、能力、情感、态度等方面存在着一定的差异,他们原有知识能力结构的不同导致他们对数学问题的理解也不同,从而出现解决问题的策略的个性化和多样化。
因此本节课在探索梯形面积的计算公式时,老师为学生提供一个充足的自主学习空间,启发学生利用自己已有知识和经验,自主进行探究活动,进而感受学数学的价值,并获得成功的体验,产生积极学习的动力。
二、教材分析
"梯形的面积计算"是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。由于在上述学习过程中,学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了"新旧转化"的数学思想方法,这些都为学生自主研究、探索"梯形的面积计算"这一新的学习任务创造了必要的条件,为他们实现个体意义上的数学"再创造"打下了良好的基础。
三、教学目标设计
1.使学生理解并掌握梯形的面积计算公式,能正确地应用公式进行计算。
2.通过动手操作使学生经历公式的推导过程,培养学生的迁移类推能力和抽象概括能力,将转化策略的教学融入到学生的“拼、剪、画、说”活动中,使学生领悟转化思想,感受事物之间是密切联系的,使学生能应用所学知识解决实际问题,发展学生的空间观念。
3.引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力,通过演示和操作,让学生在拼剪中感受数学知识的内在美,培养团队合作意识。
四、教学重点难点
教学重点
1.理解并掌握梯形的面积计算公式。
2.运用梯形的面积计算公式解决问题。
教学难点
梯形面积公式的推导过程。
五、教学策略设计
我在导学"梯形的面积计算"时,并没有沿袭以往的教学思路,而是立足于学生已有的数学现实与经验,
六、教学过程设计
教学环节一
一)汇报预习的成果
(预习单)
1、你还记得平行四边形、三角形面积公式吗?它们是怎么推导出来的?
2、对于梯形,你们已经知道了什么?
3、利用你手中的梯形,动手折折、剪剪、拼拼,你还能发现什么?
4、如何推导梯形的面积计算公式?谈谈你的想法。
学生汇报前三个:
生1:我发现任何梯形都可以分成两个三角形。
生2:我发现任何梯形都可以分成一个三角形和一个平行四边形。
师:善于观察,勇于实践,大家才会有如此丰富的发现。这节课,我们将在此基础上进一步研究"梯形的面积计算"。
(揭示课题)
设计意图
引导自由操作,有利于学生在较为轻松的状态下激活原有的"数学活动经验",为随后有目的的尝试、实验和验证作好铺垫。
教学环节二
二)"假设--实验--验证",引导学生体验数学知识"再创造"的过程。
师:汇报预习单第4个问题。如何推导梯形的面积计算公式?谈谈你的初步设想。
(学生分组交流。教师深入学生中倾听,并作必要的启发和引导)
生6:能不能像推导平行四边形面积公式那样,通过剪拼,将梯形也转化成已经学过的平面图形,如长方形、平行四边形或三角形,然后再来推导?
生7:可不可以像三角形那样,先合拼成一个大平行四边形,然后来推导?
生8:看看梯形的面积与已经学过的长方形、三角形及平行四边形等有什么联系,根据它们间的联系进行推导。
设计意图
交流对问题的初步设想,是准确把握学生已有数学现实的关键,也是实现"再创造"的开始。这对教师如何引导学生进行随后的"再创造"活动起着重要的作用。
教学环节
三)应用知识,自主探究
师:同学们是不是都有自己的想法了,想不想马上动手试试?
(学生独立或合作尝试转化。教师深入学生群体,听取意见,并对有困难的学生作必要的提示和启发)
教学环节四
设计意图
对数学材料实现"再创造",这不仅需要学生的独立思维,同时也需要组员间的相互启发以及教师的及时点拨与引导。也是上述教学过程中学生的"合作尝试"及教师的"个别指导"的意义。
四)汇报展示
师:不少同学已经成功地对自己的假设进行了验证,请向大家展示你们的研究思路与成果。
生1:我们组将两个完全一样的梯形拼合成一个平行四边形。平行四边形的底相当于梯形上、下底的和,平行四边形的`高相当于梯形的高。梯形的面积是拼成的平行四边形面积的一半,也即"梯形的面积=(上底+下底)×高÷2"。
师:能设法将新问题转化成已经学过的问题来解决,这本身就是一种创造。那么在这些方法中,你最欣赏哪一种,就请你借助手中的学具再次完成这一转化与推导过程,并在小组里进行交流。
设计意图:
引导学生及时交流,展示他们个性化的研究思路与成果,激发了他们成功的学习体验和进一步深入研究的积极愿望。
教学环节
五)在实践应用中拓展、延续数学知识的"再创造"。
师:(出示例题)请大家选择适合自己的面积计算公式求出梯形的面积。
(出示基本练习)测量数据,并计算出这些梯形的面积。
设计意图:
学生自由测量、计算并交流方法,教师对学生的学习过程作出即时评价和指导,鼓励学生对问题的不同理解及方法。
六)作业设计
师:学校决定在操场东侧宽10米的长方形空地上建造一些形状各异的梯形花坛。如果请你来设计,你觉得怎样设计比较合理?画出设计图,并预算出每一个花坛的占地面积。
(学生自由结合,分组进行构思、设计,并就占地面积进行计算与交流)
实践性练习又一次激发了学生"再创造"的热情,并为他们创造性地解决问题提供了机会,为提升他们的实践能力和创新品质营造了广阔的空间。
七)板书设计
梯形的面积
梯形的面积=(上底+下底)×高÷2转化
S梯形=(a+b)×h÷2(学生的方法展示)
八)预设效果
本堂课就学生来说的会在一次次思考和动手操作的过程中体会数学学习的乐趣。
九)课外知识的准备
了解多种转化的方法。
第九册梯形面积计算
教学内容:小学数学第九册80页
教学目标:
1、使学生发现梯形面积公式的推导方法,理解公式的形成,并能运用公式解决简单的实际问题,发展实践能力。
2、通过对面积公式的探索,培养学生观察比较、动手操作的能力,发展空间观念。
3、结合教学内容,渗透“转化”的教学思想,培养学生初步的创新思维能力。
教学重点:发现、理解和应用梯形面积计算公式。
教学难点:理解公式的推导过程
教具准备:计算机软、硬件一套;两个完全一样的直角梯形拼成的长方形;两个完全一样的梯形拼成的平行四边形;标有上、下底和高及数据的一般梯形、等腰梯形、直角梯形各一个。
学具准备:每个学生准备两个完全一样的一般梯形、直角梯形、等腰梯形和剪刀。
教学过程:
一、迁移诱导,激发参与兴趣
1、启发学生回忆三角形的面积推导公式。
2、板书课题,引入新课。
二、实验操作,引导参与探究
1、转化
学生分成四人小组进行学习。
独立拿出准备好的各种梯形,拼成学过的图形。
学生拼摆,教师对不同层次的学生,及时给予点拨和鼓励。
2、观察
学生分组,结合拼成的平行四边形观察、讨论。教师巡视,注意点拨。
板书如下:梯形面积 拼成的平行四边形面积的'一半
平行四边形的底 梯形是上底+下底
平行四边形的高 梯形的高
3、推导
学生分组讨论,教师巡视,注意点拨。
学生反馈,教师注意用规范的语言进行调控。
板书如下:
平行四边形面积= 底 × 高
梯 形 的 面 积=(上底+下底)×高÷2
S=(a+b)×h÷2
提问:计算梯形的面积为什么除以2?
三、反馈调节,巩固参与成果
1、引导实际应用,巩固梯形面积公式
2、分层训练,培养能力
3、发展提高,深化知识
教学目标
1、通过操作、观察、比较等活动,自主探索梯形面积计算公式,渗透转化的数学思想方法。
2、能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。
教学重难点
教学重点:探索并掌握梯形面积计算公式。
教学难点:理解梯形面积计算公式的推导过程,体会转化的思想。
教学过程
一、复习引入,知识铺垫
计算下面各图形的面积:
全班核对答案。
教师:平行四边形、三角形的面积计算公式分别是什么?
教师:它们之间有什么联系呢?
因为两个完全重合的三角形可以拼成一个平行四边形,所以平行四边形面积的计算公式的一半就是三角形面积的计算公式。
【设计意图】通过平行四边形、三角形的面积计算方法以及它们之间的联�
二、探究梯形面积的计算公式
1、提出问题(课件出示教材第95页的主题图)。
教师:同学们在图中发现了什么?
教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?
教师:你能用学过的方法推导出梯形的面积计算公式吗?
2、动手操作。
(1)选择合适的材料,进行操作。(同桌合作)
(2)反馈交流。
让各小组充分展示操作过程。关键了解学生是怎样想的?询问其余同学是否有疑问?在操作中学生会发现,只有两个完全重合的梯形才能拼成一个平行四边形。
预设:
①数方格;
②拼摆,转化成平行四边形;
③割,转化成两个三角形;
④割,转化成一个平行四边形和一个三角形;
⑤割,转化成长方形和两个三角形;
⑥割补法,转化成平行四边形。
【设计意图】这一环节让学生大胆动手操作,在实验中不断发现解决问题,在同伴的交流中拓展自己的思维、视野。
3、公式推导。
(1)教师:
方法①的数方格的方法中渗透着割补法的思想,
方法②到方法⑥都是把梯形转化成我们已经学过面积计算方法的图形。
先以方法②为例,观察原有的梯形和转化后的平行四边形,你发现它们之间有哪些等量关系?
学生:梯形的上底与下底的和等于平行四边形的底,梯形的高和平行四边形的高相等。梯形的面积是平行四边形的面积的一半。
学生边说,教师边课件演示。
逐步完成板书:
教师:如果用表示梯形的面积,表示梯形的上底,表示梯形的下底,表示梯形的高,梯形的面积公式还可以写成:(板书)。
(2)教师:观察方法③,如果把梯形割成两个三角形,如何来推导梯形的面积计算公式呢?这两个三角形和原来的梯形有什么样的等量关系呢?
学生:三角形1的底就是梯形的上底,三角形2的底就是梯形的下底,两个三角形的高都和梯形的高相等。两个三角形的面积之和就是梯形的面积。
学生边说,教师边板书演示。
教师:为了方便,我们直接用表示梯形的上底,用表示梯形的下底,表示梯形的高。
教师:这与前面推导出来的梯形面积计算公式是一样的。
(3)教师:观察方法④,如果把梯形分割成一个平行四边形和一个三角形,又如何推导公式呢?割成的平行四边形、三角形和原来的梯形有什么样的等量关系呢?
学生:平行四边形的底就是梯形的上底,三角形的底等于梯形的下底减上底,平行四边形、三角形和梯形的高是相等的。平行四边形的面积加三角形的面积就等于梯形的面积。
学生边说,教师边板书演示。
其中的计算过程稍复杂,可配合教师讲解完成。
教师:这和前面推导出来的结论是一样的。
(4)教师:看方法⑤,把梯形分割成一个长方形和两个三角形,又如何推导公式呢?先说说它们之间有什么样的等量关系?
学生:长方形的长就是梯形的上底,长方形、三角形和梯形的高是相等的。长方形加两个三角形的面积就是梯形的面积。
学生发现两个三角形的底是多少,无法描述,不确定。这时,把两个三角形拼成一个三角形。新三角形的底就是梯形的下底减上底。
教师边板书演示。
教师:接下来的推导过程和方法④是一样的。
(5)教师:方法⑥,通过割补法把梯形转化成平行四边形。它们之间又有什么样的等量关系呢?
学生:平行四边形的底就是梯形的上底和下底之和,平行四边形的高等于梯形的高的一半。平行四边形的面积和梯形的面积相等。
教师课件演示。
教师:通过上面多种转化方法,我们知道了梯形的面积计算公式,现在你知道要计算梯形的面积需要哪些数据了吗?(上底、下底、高)
【设计意图】不满足于一种方法的公式推导,展示多种方法,开拓学生的思维,沟通多种推导方法之间的联系和区别,凸显转化思想的作用。
三、学以致用
1、出示教材第96页例3。
例:我国长江三峡水电大坝的横截面的一部分是梯形,求它的面积?
教师:什么是横截面?
请学生独立解决,全班核对答案。
教师:因为我们刚刚开始学梯形的面积公式,对公式不熟,所以计算时可以先写上公式,再列算式。等以后熟练了,公式可以省略。
2、练习,出示教材第96页“做一做”。
教师:这题特别要看清楚问题,问的是“它们的面积分别是多少”,所以问的是“左边梯形的面积是多少”和“右边梯形的面积是多少”,千万不要把“分别”看成“共”,变成求整个大梯形的面积。
3、求面积,只列式不计算?
4、求出这条水渠的横截面?
5、有一个梯形果园,它的上底是45米,下底是60米,高是30米,如果每棵果树占地15平方米,这个果园大约可以种果树多少棵?
6、判断:
1、两个面积相等的梯形可以拼成一个平行四
边形。
2、梯形面积是三角形面积的2倍()。
3、一个梯形有无数条高()。
4、如果梯形的面积是12平方厘米,两个完全一样的
梯形拼成的平行四边形的面积是6平方厘米。()
5、一个梯形上下底的和是20米,高是8米,这个梯
形的面积是80平方米。()。
【设计意图】因为学生第一次接触“横截面”,所以强调了对“横截面”的理解。从简到难,多层次对公式进行应用,在应用中加强对公式的理解。
四、回顾反思
教师:回顾本节课所学的内容,你最大的收获是什么?
【设计意图】在总结回顾中,帮助学生进一步理解提升所学的知识。
五、布置作业
完成教材第97页第1题到第5题。
在经历了平行四边形和三角形的面积计算公式推导过程的体验基础上,教学这部分内容时,我放手让学生自主探究新知,并引导学生从不同途径验证,学生参与的积极性高,课堂生动活泼,效果显著。具体情况如下:
一、创设问题情境,激发学生兴趣
我先出示了一个梯形,引导学生简要复习梯形的基本特征和各部分的名称,然后直接抛出探究任务:梯形的面积是怎样计算的呢?你能用学过的方法把梯形转化成学过的图形,从而推导出梯形的面积公式吗?
学生对具有挑战性的问题还是有很高的兴趣的,所以马上就自发组合成探究小组。
二、以学生自主学
考虑到学生已有了平行四边形、三角形面积计算公式推导方法的经验,本节课在教学思路上是淡化教师教的痕迹,突出学生学的过程。为学生创设一种“猜想”的学习情景,让学生凭借已有经验大胆猜想,进而是实践检验猜想成为学生自身的需要,使运用科学探究的方法进行探究学 这比起盲目的乱猜来,更能激起学生的探究欲,学生的思维更有深度。
三、在推导梯形面积计算公式时,我放手让学生从自己的思维实际出发,给学生充分的思考时间,对问题进行独立探索、讨论、交流,学生充分展示自己或正确或错误的思维过程。
在合作交流中互相启发,共同发展。在此过程中,我只是组织者、指导者,起到了帮助和促进的作用,充分发挥学生的主动性和积极性,最终达到使学生有效的实现对梯形面积公式的理解的目的。
四、渗透数学中的变换思想,在转化操作过程中,引导学生运用平面图形的旋转和平移,认识了解旋转和平移的含义及方法,以及其对图形位置变化的影响,进一步促进学生空间观念的发展。
但在这节课当中,也存在一定的不足,只要是学生在与老师的配合上还有待改进,其中部分学生的讨论不够积极,有个别学生不会参与讨论,不愿意发表自己的见解,而且气氛也有待改提高,不过学生对动手操作、推导公式倒是很感兴趣。
教学目的:
使学生进一步掌握梯形面积的计算公式,能正确、熟练地计算梯形的面积。
教学重点:
应用所学的知识解决一些实际问题。
教学准备:
实物投影仪等。
练习过程:
一、基本练习
1.口算:练习十八第5题。根据学生情况,限时做在课本上,集体订正。
7.2÷0.122.4÷0.30.2×12.6×5
0.38×10000.8×2526.1-3.5-7.5
3.8+2.5+6.210÷2.54.8×0.2+5.2×0.2
2.看图思考并回答。
(1)怎样计算梯形的面积?
(2)梯形面积的计算公式是怎样推导出来的?
(3)右图所示梯形的面积是多少?
二、指导练习
1.练习
(1)名数的改写方法是什么?根据学生的回答板书:
除以它们之间的进率
低级单位高级单位
乘它们之间的进率
(2)根据改写的方法将第6题的结果填在课本上。
3.6公顷=()平方米1平方米=()公顷
4平方千米=()公顷52公顷=()平方千米
160平方厘米=()平方分米=()平方米
0.25平方米=()平方分米=()平方厘米
(3)集体订正时让学生讲一讲自己的'想法。
2.练习:科技小组制作飞机模型,机翼的平面图是两个完全相同的梯形制成的(如图)。它的面积是多少?
(1)生独立审题,分小组讨论解法。
(2)选代表列出解答算式,不计算。
(3)由学生讲所列算式的想法,
(4)指导学生讲“(100+48)×250”为什么不除以2?
(5)学生计算出它的面积,集体订正。
三、课堂练习
1.练习:根据表中所给的数值算出每种渠道横截面的面积。
渠口宽(米)3.11.82.02.0
渠底宽(米)1.51.21.00.8
渠深(米)0.80.80.50.6
横截面面积
(平方米)
生独立解答出结果并填在课本上,集体订正。
2.练习一个果园的形状是梯形。它的上底是180米,下底是160米,高是50米。如果每棵果树占地10平方米,这个果园有多少平方米?
一、说教材
1、说教材的地位和作用
《梯形的面积》是人教版五年级数学上册第五单元的一个课时。这节课,是在学生认识了梯形特征,经历、探索了平行四边形、三角形的面积计算的推导方法,并形成了一定空间观念的基础上进行教学的。因此,教材中没有安排数方格的方法求梯形的面积,而直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法把梯形转化为已学过的图形来计算它的面积。让学生在自主参与探索的过程中,发现并掌握梯形的面积计算的方法,让学生在数学的再创造过程中实现对新知的意义建构,解决新问题,获得新发展。
2、说教学目标、重点、难点
根据本节课的教学内容和五年级学生的认知规律,本课的教学目标确定为:
知识与技能:在实际情境中,认识计算梯形面积的必要性。能运用梯形面积的计算公式,解决相应的实际问题。
过程与方法:培养学生学会发现知识之间的规律,加强学生动手操作能力和观察能力。在自主探索和小组合作探索的活动中,经历推导梯形面积公式的过程。
情感态度价值观:在探索梯形面积计算方法的过程中,获得探索问题成功的体验。
教学重点:理解并掌握梯形面积计算公式,正确计算梯形的面积。
教学难点:梯形面积计算方法的推导过程。
二、说学生
由于学生学习了平行四边形、三角形的面积计算方法,初步理解了平移、旋转的思想,具备了初步的归纳、对比和推理的数学活动经验,对梯形面积公式的推导,有一定的启发。学生受思维定势的影响,很容易就会利用两个完全相同的梯形转化成平行四边形的面积推导出梯形的面积公式,而用一个梯形推导出梯形的面积公式对有的学生来说,会有一定的难度。另外,由于班额人数较多,因此在合作中给教师的指导带来了一定的困难。
三、说教学策略
根据教学的三维目标,结合几何形体教学的特点,我采用以下的教学方法:
1、知识的迁移法:在教学活动中,充分尊重学生已有的`知识与生活经验,引导学生进行观察、比较、分析、概括,培养学生的逻辑思维能力。
2、采用“小组活动,合作探究的教学方法”。
在教学中,组织学生开展探索性的数学活动,注重知识发现和探索过程;体现变知识的接受过程为科学的探究过程,利用学生的合作探究能力,引导学生自主学习。
3、采用直观教学法。
在教学中运用直观演示,来突出教学重点,从而启发学生思维,帮助学生突破学习的难点。
通过本节课的教学,使学生学会以旧引新,学法迁移进行学习,培养学生的自学能力和探索精神,提高学生自主发现问题,分析问题,解决问题的能力。
四、说教学实施过程
基于上述认识与理解,我对梯形的面积教学流程作了如下设计:
第一环节:创设情境,导入新课
上课开始,根据我班现有的实际情况设计了这样的情境:“我们班同学喜欢听故事吗?”学生上五年级以来,最感兴趣的就是爱听故事。于是,我通过讲曹冲称象的故事,让学生悟出转化法来解决梯形的面积。由此,很自然的导入本节课。让学生认识到求梯形面积的必要性,同时也激发起了学生积极的学习情感。
第二环节:动手操作,探究新知
新课程标准强调:“教学要从学生已有的经验出发,让学生亲身经历知识的学习过程”。所以,在教学中,我设计了让学生自己去探求推导梯形面积的计算方法的活动。因为学生学过了三角形面积的推导,所以很容易就会想到用两个完全相同的梯形拼成平行四边形推导面积公式的途径。最后,再用课件直观展示出梯形面积的推导方法,加深学生的理解。
第三环节:合作探究,发散验证
在操作探究的基础上,我引导学生自己总结出了梯形面积的计算公式。然后,我向学生提问:“如果我们手中只有一个一般的梯形,你们能不能自己动脑想出别的方法验证我们刚才的发现呢?”以此来鼓励学生采用多种方法进行验证刚才的结论。
这样的设计,体现了让“学生自主探究、自主学习”的教学理念。通过展示学生们个性化的研究思路与成果,激发他们成功的学习体验和进一步深入研究的积极愿望。同时也达到既突出“重点”,又化解“难点”的目的。
第四环节:应用公式,解决问题
数学知识来源于生活又服务于生活,要使学生真正学好数学,形成数学技能,必须密切联系学生的生活实际,使其体验数学在生活中的广泛应用。所以,围绕这个目的,我设计了下面的一些练习:
第一题:是判断题,加深学生对推导公式的印象。
第二题:基本题,例3,基本题,课本中的“做一做”。目的在于让学生准确使用梯形的面积计算公式。
第三题:是书中89页做一做,能发现了什么?目的在于让学生掌握梯形的面积计算公式。
第四题:课本90页的第1题,给学生空间想象能力及动手操作能力。
第五题:是一道变式练习,目的在于培养学生灵活运用公式的能力。
练习设计由浅入深,有层次性,让学生感受到通过努力而获得成功的喜悦。
第五环节:课堂回顾,总结收获
成功和体验是学生情感发展的基础,师生在交流中共享学习的快乐。
教学目标
1、在实际情境中,认识计算梯形面积的必要性。
2、在自主探索中,经历推导梯形面积计算公式的过程。
3、能运用梯形的面积公式,计算相关图形的面积,解决实际问题。
教学重点
经历推导梯形面积计算公式的过程。
教学难点
理解并能运用梯形的面积公式进行计算。
教具、学具
教学挂图,梯形纸片,剪刀,三角尺等。
教师指导与教学过程
学生学习活动过程
设计意图
一、复习
平行四边形、三角形以及梯形的面积公式
二、计算梯形面积时应注意的些什么?
学生讨论后汇报总结。
S=ah
S=ah÷2
S=(a+b)×h÷2
1、必须知道底和高,计算单位要统一,底和高要对应。
2、等底(底相等)等高(高相等)的两个梯形面积一定相等,形状不一定相同。
3、完全一样的`梯形可以拼成一个平行四边形,梯形的面积是平行四边形的面积的一半,平行四边形的面积是梯形面积的2倍。所以:
巩固平行四边形和梯形的面积计算方法。
让学生熟练的掌握各种有关梯形面积计算的方法。能灵活运用。
教师指导与教学过程
学生学习活动过程
设计意图
三、练习
练一练第1~3题。
四、布置作业
练一练第4题。
已知梯形的底和高,求面积用(上底+下底)×高÷2。
已知梯形的底和面积,求高,用面积×2÷(上底+下底)。
板书设计:梯形的面积
S=ah
S=ah÷2
S=(a+b)×h÷2
教学反思:
教学内容:
混合练习(课本第84-85页,练习十九第11-18题)
教学目标:
⒈通过混合练习,理清多边形的面积计算公式,能够熟练地运用公式求面积和解答有关的应用问题。
⒉在复习与梳理中学会联系,进而提高综合分析解题能力。
教学过程:
一、复习梳理
⒈公式的复习
我们已经学过各种多边形的面积计算公式,谁来说说这些公式各是什么?它们是怎样推导出来的?
师生共同进行:边回顾、边画图、边讨论;
⒉教师指出:多边形的面积公式是互相联系,彼此相关的,我们必须以长方形的面积公式为基础,以平行四边形的面积为重点,清楚地把握它们之间的同在联系和区别。
二、练习巩固
⒈独立完成练习十九的第12题--看谁正确率最高!
要求:开列已知条件;写出相应的面积公式;列式解答。
⒉完成第14题
先议:⑴左图是什么图形?求面积需要哪些条件?怎么取得?⑵右图是什么图形?为什么?求它的面积需要量几个量?把它们分别量出来。
⒊完成第13和15题
在求得面积之后,怎样选择算法求解。
三、综合提高:
讨论:
⑴平行四边形的底扩大3倍,高不变,面积怎样变化?如果高也扩大2倍呢?
⑵三角形的底不变,高缩小2倍,面积怎样变化?如果高缩小2倍,底扩大2倍,情况又怎样呢?
⑶一个三角形与一个平行四边形等底等面积,那么三角形底边上的高一定是这个平行四边形高的2倍,为什么?
四、:
多边形的面积计算,关键是公式的理解与熟练,同时在选用公式时,尤其注意哪些图形求面积时要÷2。
五、板书设计:
梯形面积的计算
六、教后感:
2、应用题
教学目标:
1、在平行四边形、三角形面积推导的基础上,引导学生采用合作探究的形式,概括出梯形面积计算公式。
2、会正确、较熟练的运用公式计算梯形面积,并能解决一些生活中的实际问题,提高学生发现问题、分析问题、解决问题的能力;。
3、通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,发展学生的空间观念。
4、渗透数学迁移、转化思想,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。
教学重难点
教学重点:理解并掌握梯形面积公式,会计算梯形的面积。
教学难点:自主探究梯形面积公式。
教学过程
课前准备:谁来介绍你们的姓名、年龄、学校、爱好等等,让大家都来了解你。
我们先介绍这,我相信同学们在课堂上的表现一定会让所有的老师都记住你。
一、创设情境,激发兴趣。
(出示情境图)。
谈话:同学们,今天李老师和你们一起来参观王伯伯的甲鱼池,请仔细观察,你能发现哪些数学信息?
生:1号甲鱼池的形状是梯形的,每平方米放养甲鱼苗200只。
师:根据发现,你能提出什么数学问题?
学生观察情境图,提出问题。
生:1号甲鱼池的面积有多大?
师:你提的问题很好,同学们想不想知道。谁还能提出什么问题?
生:1号甲鱼池能放养多少甲鱼苗?
二、自主探究梯形的面积计算方法。
1、教师:刚才同学们提的问题都很有价值。(课件)我们来看这两个问题。要求1号甲鱼池的面积,也就是求什么图形的面积?
生:梯形。
师:你会求这个梯形的面积吗?那么怎样求梯形的面积呢?这节课我们就一起来探究梯形的面积。板书课题:梯形的面积。
教师:如果我用这个梯形纸片代表甲鱼池的面积,想一想,你能用什么办法求出这个梯形纸片的面积?请你先独立思考,然后在小组内交流一下你的方法。
2、小组讨论交流,教师巡视了解。
3、展示、汇报交流。
师:哪个小组先来说说你们的方法。拿着你的梯形到前面来说给同学听一听。
生1:(方法1)——把梯形分成平行四边形和三角形,分别计算出它们的面积,再求出它们的面积和。
师:你觉得这个方法行吗?大家看,这个小组的方法是把梯形分割成平行四边形和三角形来求,谁是这样想的?
师:谁有不同的方法?
生2:(方法2)——把梯形分成两个三角形,求出每个三角形的面积,再计算出它们的面积和。
师:你这个方法也挺好。这个小组是把梯形分割成两个三角形来求梯形面积,真是些爱动脑筋的好孩子。和他方法一样的同学请举手。谁的方法和他们都不一样?
生3:(方法3)——把两个完全一样的梯形拼在一起,拼成一个平行四边形,这个梯形是平行四边形面积的一半。平行四边形的面积等于底乘高再除以2就是梯形的面积。
师:这个同学说的太好了。大家认为这个方法好不好?
这个同学的`方法是把两个完全一样的梯形拼成一个平行四边形,平行四边形的面积等于底乘高,这个底是谁的底?高呢
生:平行四边形的底,平行四边形的高。
师:平行四边形的面积等于底乘高再除以2就是梯形的面积。
师:大家看,这位同学用了这样两个完全一样的梯形拼成一个平行四边形。是不是任意两个完全一样的梯形都能拼成一个平行四边形?
师:大家用手中的梯形拼一拼,谁再上来拼一拼,再说给同学们听听。
师:看来任意两个完全一样的梯形都能拼成一个平行四边形。每个梯形的面积就是平行四边形面积一半。大家理解这个方法了吗?还有不同的吗?
生4(方法四):我用两个完全一样的直角梯形拼成了长方形,一个梯形的面积就是这个长方形面积的一半。
师:这个方法是不是所有的两个完全一样的梯形都可以用。
生:是两个直角梯形。
师汇总:对,刚才同学们想出了这些方法来求梯形面积,你们真了不起。下面我们来看这些方法。(课件演示)
第一种是把梯形分割成一个三角形和一个平行四边形;
第二种是把梯形分割成两个三角形;
第三种把两个完全一样的梯形拼成了一个平行四边形。
表扬:这三种方法都是把梯形转化成已学过的图形来解决。同学们能够运用转化的方法,你们真的很棒。这种方法很重要,在以后的学习中我们会经常用到。
我们前面学过的长方形、正方形、平行四边形、三角形都有自己的面积计算公式,那么梯形也有自己的面积计算公式。
师:大家先来猜想。�
师:梯形的面积到底与它们有什么关系呢?你们想不想研究?
三、探究操作,推导出梯形面积公式:
(一)出示问题,明确目标
我们首先来看这三种方法,根据我们现有水平,由于前两种方法对我们来说研究起来确实有困难,下面我们就采用第3种方法来深入研究梯形的面积。
(点课件)大家一起来看这种方法,同学们用两个完全一样的梯形拼成平行四边形,梯形的面积等于拼成平行四边形面积的一半。
师板书:两个完全一样的梯形拼成平行四边形
梯形的面积=拼成平行四边形面积÷2=底×高÷2。
拼成平行四边形的底会与梯形的上底、下底有什么关系?拼成平行四边形的高和梯形的高又有什么关系?根据这些关系,你能推导出梯形面积计算方法吗?
师:下面就请同学们用手中的梯形拼一拼,想一想,怎样推导梯形面积计算公式。请同学们在小组内研究研究。
(二)自主探究合作学习
小组内讨论交流。
学生分组动手操作,教师巡视指导。
教师参与到每个小组中进行讨论和指导,以便发现和收集信息。
(三)成果交流,质疑解难
1、全班展示回报:
师:哪个小组的同学说一说你们小组是怎么研究的?拿着你手中的纸片到前面跟同学说一下。
生:两个完全一样的梯形拼成一个平行四边形,梯形的面积是平行四边形面积的一半。平行四边形的底就是梯形的(上底+下底),平行四边形的高就是梯形的高。推导出梯形的面积公式就是梯形的(上底+下底)乘高除以2。
师表扬:这个小组研究的非常好,推导出梯形面积计算方法。大家听明白了吗?
师:你们也是这样想的吗?哪个小组再来说说你们的做法?
3、师:刚才同学们经过研究,推导出梯形面积计算方法。下面我们一起来回顾梯形面积的推导过程。(课件演示转化过程)
梯形面积=平行四边形面积÷2
梯形面积=底×高÷2
师:拼成的平行四边形的底是梯形的上底与下底的和,平行四边形的高与梯形的高相等,就是(上底+下底)×高÷2
师:这样我们就得到了梯形的面积公式是梯形面积=(上底+下底)×高÷2
2 、师:通过研究,我们发现拼成的平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形的高,谁再来说说梯形面积计算方法是什么?生说师板书。
板书面积公式:梯形的面积=(上底+下底)×高÷2。
提问:(上底+下底)×高算的是什么?为何要除以2?。
4、学习字母表达式:
谈话:谁能用字母表示?说说每个字母分别表示什么?
师:S=(a+ b)×h ÷2(板书)
四、运用知识,解决情景问题。
师:这节课同学们研究了怎样求梯形的面积。推导出求梯形面积计算公式,现在我们就运用所学知识来解决前面提出的两个问题:1号甲鱼池的面积是多少?能放养多少只甲鱼苗?(课件出示题目)
请学生做在练习本上。两名学生板演,其余学生独立练习。全班交流。
四、随堂检测,巩固目标。
师:看来同学们会运用梯形面积计算方法解决实际问题。接下来我们要向自己挑战,有没有信心。
挑战自我:
一、判断
1、两个梯形就可以拼成平行四边形。()
2、梯形的面积一定比平行四边形的面积小。()
3、在下图中平行四边形的面积是梯形面积的2倍。()
师:同学们判断的很好,理解问题很透彻,希望同学们向更高的目标挑战。下面看看实际生活中的梯形,你能计算出他们的面积吗?
二、(挑战自我)
解决问题:
1、学校操场要建一个梯形指挥台,平面是梯形,上底是5米,下底8米,高6米,这个梯形台的平面是多少平方米?
2、一块梯形的墙,上底15米,下底比上底多5米,高是6米,这块墙的面积是多少平方米?
3、一个梯形,上底和下底的和是36cm,高12cm,它的面积是多少?
师:显示我们聪明才智的机会到了,请同学们大显身手。
4、王大爷用50米长的篱笆靠墙围了一个羊圈(如图)。求这个梯形羊圈的面积。
学生独立练习,全班交流。
课后小结
课堂小结:
同学们,这节课你们都有哪些收获?还有哪些不懂的地方?
课后习题
作业布置:
学校门前有一条水沟,横截面是梯形。沟口宽0、9米,沟底宽0、7米,沟深0、5米、它的横截面的面积是多少平方米?