小学数学《圆的面积》教案优秀5篇

作为一名优秀的教育工作者,很有必要精心设计一份教案,教案是教学蓝图,可以有效提高教学效率。怎样写教案才更能起到其作用呢?为大家精心整理了小学数学《圆的面积》教案优秀5篇,在大家参照的同时,也可以分享一下给您最好的朋友。

圆的面积教案 篇1

教材分析:

初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。

学情分析:

学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。

教学目标:

1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。

2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。

3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实践和数学交流的能力,体验数学探究的乐趣和成功。

4、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察曲与直的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。

教学重点:

通过观察操作,推导出圆面积公式及其应用。

教学难点:

极限思想的渗透与圆面积公式的推导过程。

教学过程:

活动一:创设情景,提出问题

1、课件出示羊吃草的动画:一个放羊娃将一只小山羊用一根绳子把它拴在木桩上。请问小山羊最多能吃到多大范围的草呢?

2、圆的面积--含义:圆所占平面的大小叫做圆的面积。

3、如果将绳子加长一点,又会出现什么情况?产生这种变化的原因是什么?这说明了什么?

活动二:猜想比较:

出示图

师:看了这两幅图形,你发现了什么?右图小正方形的面积是多少?左图大正方形的面积是多少?你能猜一猜圆的面积和大正方形面积有什么联系吗?

活动三:自主探究,验证猜想

1、引导转化:

师:回忆以前学过的平面图形,它们的面积公式是什么?分别怎么推导出来的?

以上这些图形都是通过剪拼,转化成已学过的图形,再进行推导。那么圆是否也可以把它剪拼转化成为熟悉的平面图形呢?

2、动手操作:

(1)分小组动手操作,把圆剪拼转化成其他图形,看谁拼得好,拼出的图形多。

操作引导:

A、剪--怎样剪?剪成几份?

B、拼--怎样拼?拼成什么?

(2)展示交流并介绍,选出最合理的剪法。

(3)拼成后的近似长方形和标准长方形比较,你发现了什么?能不能把边再变得直一点?

想象一下,平均分成64份、128份、256份。会是什么情形?(课件演示)

(4)小结:平均分的份数越多,边越直,拼成的图形越接近于长方形。

3、自主推导

(1)小组合作,选择喜欢的1~2个图形,尝试推导公式。

(2)学生展示、介绍自己的推导过程

(3)教师板演圆面积的推导过程

4、情景延续:

(1)如果绳长为5米,计算圆的面积和周长。

(2)将绳子加长为原来的2倍,那么羊能吃到草的面积也是原来的2倍。对吗?

5、小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,你们真了不起!那么,求圆的面积需要什么条件呢?(是否只有知道半径才能求圆的面积?)

活动四:实践运用,体验生活

1、量出自己带来的圆形物体的直径,并计算出面积。

2、社区公园有一个圆形水池(中有假山),请想办算出水面面积。

活动五:全课小结

通过本节课的学习你有哪些收获?

《圆的面积》教学设计 篇2

一、内容简介及设计理念

本节课是在学生充分认识了圆的各部分的特征和掌握了园的周长的计算的基础上进行教学的。通过对圆面积的研究,使学生初步掌握研究曲线图形的基本方法,为以后学习圆柱的表面积打下基础。本课的教学要求主要是帮助学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括等能力。

本节课设计了三次探究活动,第一次探究活动,通过折一折和剪拼把圆转化成已经学过的三角形和平行四边形,得到了解决问题的思路。第二次探究活动,围绕着“怎样使折出的图形更像三角形”、“使剪拼后的图形更像平行四边形”这些问题开展操作、想象活动,充分体验了“极限思想”。

第三次探究活动,学生借助数字、字母、符号等,运用数学的思维方式进行思考,推导出圆的面积计算公式。

二、教学目标:

1.经历圆的面积计算公式的推导过程,掌握圆的面积计算公式。

2.能正确运用圆的面积计算公式计算圆的面积。

3.在探究圆的面积计算公式的过程中,体会转化的数学思想方法;初步感受极限的思想。

三、教学重点和难点:

圆的面积计算公式的推导。

四、教学准备:

圆形纸片、剪刀、多媒体课件等。

五、教学过程:

教学过程教师活动学生活动

一、谈话引入,揭示课题

二、探究新知。

1、第一次探究,明确思路,体会“转化”的数学思想方法

2、第二次探究,明确方法,体验“极限思想”

3、第三次探究,深化思维,推导公式。

4、解决问题

5、小结

三、知识应用(出示一个圆)大家看,这是什么图形?

师:你已经掌握圆的哪些知识?

师:关于圆你还想探讨什么?

(板书课题:圆的面积。)

师:谁能摸一摸这个圆片的面积。

师:那这个圆的面积怎么求呢?(学生沉默),请你在大脑中搜索一下,以前我们研究一个图形的面积时,用到过哪些好的方法?

师:那圆能不能转化成我们学过的图形呢?请大家利用手中的圆纸片,先想一想,再动手试一试,然后在小组内交流一下。(教师巡视[【评析】“圆”作为一种由曲线围成的图形,与学生头脑中熟悉的由直线段围成的图形(如长方形、平行四边形等)差别比较大,因此当老师提出“怎么求圆的面积呢”,学生感到很茫然。此时,学生最渴望得到老师的指点。作为教师,如何施展自己的“点金”术,取决于教师的教学理念。

在这里,老师没有直截了当地讲“方法”,而是从培养学生的解题能力入手,引导学生从头脑里检索已有的知识和方法:“以前我们研究一个图形时,用到过哪些好的方法?”这样设计,既在学生迷茫时指明了思考的方向和方法,又让学生把“圆”这个看似特殊的图形(用曲线围成的图形)与以前学过的图形(用直线段围成的图形)有机地联系起来了,沟通了知识之间的联系,促成了迁移。

师:好,同学们停一停。刚才老师发现有的小组已经有想法了。我看你们小组的想法就很好,谁代表小组上来说一说?大家认真听,看看他们是怎么想的。

师:噢,你想把圆转化成我们学过的三角形来求它的面积。

师:谁还有不同的方法?

师:这像我们学过的什么图形?

师:你想把圆转化成平行四边形来求它的面积,是不是?

师:刚才同学们有了两种思路,可以把圆折一折,想转化成三角形,还可以通过剪拼把圆转化成平行四边形,不论哪种方法,都是把圆转化成学过的图形来求它的面积。(板书:转化[【评析】通过第一次探究,学生产生了两种很有价值的思路。即通过折一折,把圆转化成近似的三角形;通过剪拼把圆转化成近似的平行四边形。教师设计了“你们发现这两种方法的共同点了吗”这一关键问题,旨在引导学生通过回顾反思,达到渗透“转化”这一数学思想方法的目的。]。)

师:同学们刚才也发现了,不管是折出的图形,还是剪拼出的图形,都不是很像三角形,怎样让它更接近这些图形呢?是不是得进一步研究。请每个小组在两种思路中选择一种继续研究。

师:各个小组都研究出结果了,谁想先来展示一下?请你们小组先说。

师:为什么要折这么多份?

师:你们同意吗?这就是把圆折成16份时其中的一份(贴在黑板上),和刚才平均分成4份中的一份相比,确实像三角形了。如果想让折出的形状更接近三角形,怎么办?

师:你继续折给大家看看。(学生折起来很费劲)看来同学们再继续折纸有困难了,老师在电脑上给大家演示一下。这是同学们刚才把圆平均分成16份的形状(课件演示“正十六边形”),这一份看起来像是三角形了。现在我们再把它平均分成32份,有什么变化?(课件演示,并突出其中一份的形状。)

师:你发现了什么?

师:如果分的份数再多呢?请大家闭上眼睛想象一下,如果把圆平均分成64份、128份……分的份数越来越多,那其中的一份会是什么形状?

师:同学们,用这个方法,成功地把求圆的面积转化成求三角形的面积,你们的方法真好。有不一样的方法吗?(一个小组迫不及待地举手想发言)请你们小组派个代表展示你们的成果。

师:这个方法还真不错,这个小组把圆剪成8份(把这个小组的作品贴在黑板上),和刚才剪成4份拼成的图形相比,有什么变化呢?

师:能让拼成的图形更接近了平行四边形吗?

师:哪个小组分的份数更多?

(教师让另一组展示自己平均分成16份后拼成的图形。)

师:和前两次拼成的图形比,又有什么变化?

师:如果要让拼成的图形比它还接近了平行四边形,怎么办?

师:我们让电脑来帮忙。大家看,老师在电脑上把这圆平均分了32份,看拼成新的图形,你有什么发现呢?(课件演示。)

师:把这圆平均分了64份,看拼成新的图形呢?

《圆面积公式推导》优秀的教学设计 篇3

教学内容

课本第143页例2;练一练第1~6题。

教材分析

这部分内容是学生在学会了求圆的周长与直径、半径的关系以及已知圆的半径求圆面积的基础上,来学习已知圆的。周长。求圆面积的应用题。

学情分析

本班学生计算能力还可以,就是对应用题有一种害怕心理。

教学目标

1、进一步掌握圆面积公式,并能正确地计算圆面积。

2、能运用圆面积计算公式,正确地解决一些简单的实际问题。

教学重点

会熟练运用公式求圆面积。

教学难点

求出需要的条件,即圆的半径。

教学准备

作业纸、课件。

教学过程

一、复习。

课件出示:

(一)求下列各题中圆的半径。

(1)C=6.28分米,r=?;(2)d=30厘米,r=?

(3)C=15.7分米,r=?;(4)d=18.84厘米,r=?

(二)、求下列各圆的面积。

(1)r=2分米,S=?(2)d=6米,S=?

(3)r=10厘米,S=?(4)d=3分米,S=?

只要求学生进行口头表述计算公式(不求计算结果)

二、学生活动:

要求两人一小组,到室外找一个圆形物体的平面,计算出它的面积。

运用学生事先准备的工具(细绳、直尺等)

三、汇报交流

小组把作业纸上交,交流心得

姓名

准备工具

物体名称周长

半径

面积

四、巩固练习

练一练第1~6题。

《作业本》p73。

板书设计:

圆面积公式的应用

R=d÷2

R=c÷π÷2

S=πr

圆面积公式的推导分析论文 篇4

推导圆面积计算公式的三种教法评介

教学圆面积公式的推导,我曾听过三种不同的教法,现分别简介过程及稍作评点。

〔第一种教法〕

(1)复习长方形面积计算公式。

(2)让学生自学课本中推导圆面积计算公式的过程。

(3)教师边用教具演示,边要求学生回答:

①拼成的图形近似于什么图形?想一想,如果等分的份数越多,拼成的图形会怎么样?

②拼成的图形与原来圆的面积相等吗?

③这个近似长方形的长相当于圆的什么?它的宽相当于圆的什么?

(4)教师要求学生说出由长方形面积计算公式,推导出圆面积计算公式的方法(可按课本说)。

(5)揭示圆的面积公式。

〔评:这种教法,看起来是引导学生自学,并结合演示让学生回答问题,似乎学生学得较主动,实际上学 生未有实践、思考的过程,只是“依样画葫芦”,对其中的道理不能弄懂、弄通,这属于机械的学习。〕

〔第二种教法〕

1、导入新课。

教师让学生回忆一下,以前学习习近平行四边形、三角形、梯形的面积计算时,是用什么方法推导它们的计算 公式的。(用割、拼法拼成长方形或平行四边形进行计算,教师出示割、拼教具分别作简单的演示。)接着, 出示一张圆形硬纸片,问:“怎样计算它的面积呢?”(揭示课题)教师指出:我们仍可用以前学过的割、拼 法,把圆转化为已学过的图形,运用此图形的面积计算方法,推导出圆面积的计算方法。

2、实际操作。

要求学生拿出圆面积的割拼图形学具,在教师的指导下,边操作,边回答以下问题:

①把一个圆平分成两半,每一个半圆形的哪一部分长度相当于圆周长的1/2?再把每一个半圆形平均分 成8等份(如课本的切割图),那么哪一段的长度相当于圆的半径?

②想一想:能不能把这些等分出的图形,拼成近似于我们以前学过的图形?怎样拼?(要求学生动手实践 ,并指名演示拼出的几种不同的图形。如:长方形、平行四边形、梯形等。)

③所拼出的图形面积与原来圆面积相等吗?

3.推导公式。

先以拼出的近似长方形的图形为例,教师引导学生弄清,若平分的份数越多,拼成的图形越接近长方形。 进而,教师要求学生据图回答:割拼后的长方形的长相当于圆的哪一部分的长度?宽相当于圆的哪一部分的长 度?从而

由 长方形的面积=长×宽

↓ ↓

得 圆的面积 =πr×r=πr[2]。

然后,出示拼出的近似的平行四边形或梯形,再次推导看能否得出上面的圆面积公式(略)。这样就得到 了证实,使学生确信无疑。

〔评:这种教法比第一种教法有很大的改进,教师首先通过复习旧知,提出解决问题的办法,把新旧知识 有机结合起来,明确了本课中心内容,然后让学生亲手操作割拼成几种已学过的图形,引导学生观察、思考、 比较、推导,其间不囿于课本中的推导方法,让学生思维得以发散,从而强化了转化思想,多渠道地推得圆面 积计算公式。学生在学习过程中,始终处于积极主动的状态,这种学习是有意义的学习,不仅使他们“学会” ,而且使他们“会学”,且有助于发展学生的智能。〕

〔第三种教法〕

1、引入新课。

教师开导:圆在日常生活、生产实践及科学实验中,有着广泛的应用。上节课我们学习了圆的周长计算, 但仍不够,还要学会计算圆的面积。如计算一个雷达圆形屏幕的面积,一个圆形花圃的面积等。怎样才能算出 它的面积呢?(揭示、板书课题)。

2、创设情境。

教师用几张相等的圆纸片,运用折纸、剪纸的方法,分别折剪成正四边形、正八边形、正十六边形,然后 再分别与原来的图纸片叠在一起,见下图:

(附图 {图})

折四等份剪成 折八等份剪成 折十六等份剪成

正四边形 正八边形 正十六边形

引导学生观察、对比三个内接正多边形与圆的面积差(阴影部分)谁大谁小,并启发学生归结出:折成的 等份数越多,剪成的正多边形边数越多,它就越接近圆。其中正多边形的每等份(三角形)就越接近圆的每等 份。

3、推导公式。

师:同学们现在要计算圆的面积,选用哪种正多边形为好?为什么?

生[,1]:选正十六边形为好,因为它较接近圆。

生[,2]:选边数越多的`正多边形更好,因为它更接近圆。

师:回答得很好,根据现有的右图,怎样计算圆的面积呢?请大家思考以下问题:

(1)圆的面积相当于多少个三角形面积之和?

(2)这些三角形的底边之和相当于圆的什么?

(3)每个三角形的高相当于圆的什么?

学生边回答,教师边板书:

正十六边形的面积=S[,三角形]×16

=底边×高÷2×16

=底边×16×高÷2

↓ ↓

圆的面积=2πr× r÷2

=πr[2]

最后让学生自学课本中的推导方法,质疑解难。进而教师小结:推导圆的面积公式与以前推导有关图形面 积公式一样,把圆转化为已学过的图形进行计算,同学们课后如有兴趣,还可将圆割拼为平行四边形、梯形, 看是否仍能推出S[,圆]=πr[2]。

〔评:这种教法具有以下几个特点:

1、导入新课开门见山,使学生感到学习圆的面积是实际中的需要,从而激发了学生的求知欲望。

2、在推导圆面积公式前,教师创设情境,让学生领悟隐含于直观演示中的初步“极限”思想,有助于发 展学生空间想象力和空间观念,从而为推导公式作好铺垫。这是前两种教法所不及的。

3、运用“整体-部分-整体”,分割求和的方法推导圆面积公式,新颖独特,学生易于接受,又以课本 中的方法及其他方法作验证,使学生加深理解,记忆牢固。

4、小结中能促使新知与原有认知结构中有关观念建立起联系,学生的学习是“有意义”的学习。

总评:教学圆面积公式的推导,要充分运用直观手段,引发学生积极思考,不仅使学生知其然,还要知其 所以然,要把教材本身的内在联系揭示出来,促使学生运用已学知识主动地去获取新知;既使学生“学会”, 又使学生“会学”,让他们在学习中同时学到科学的方法,提高学习能力,这样才能取得较好的教学效果。由 此可见,后两种教法是可取的,且教法三更佳。

圆的面积教案 篇5

教材分析

本节课的内容是在学生初步认识了圆,学习了圆的周长以及学过几种常见直线几何面积的基础上进行学习的。学生从学习平面图形的面积到学习曲线图形的面积,这是一次质的飞跃。学生学习掌握了圆的面积的'计算方法,不仅能解决简单的实际问题,也为后面学习圆柱、圆锥的知识打下基础。

学情分析

学生已经有了一些平面图形面积计算的经验,知道运用转化的思想可以研究新的图形的面积。在教学中要鼓励学生大胆想象、勇于实践,充分利用直观教学具,结合多媒体课件,在观察、操作中将圆转化成已经学过的平面图形,从中发现圆的面积与半径、直径有关,从而推导出圆的面积计算公式。由于刚刚学习了圆的周长,学生容易把圆的面积和圆的周长混淆,所以教学中要让学生注意区分周长和面积,正确进行计算,解决实际问题。

教学目标

知识与技能:

1.理解圆的面积的概念。

2.理解圆的面积公式的推导过程,掌握圆的面积的计算方法,能正确解决实际问题。

过程与方法:

经历圆的面积的推导过程,通过动手操作,培养学生运用转化思想解决问题的能力。

情感态度价值观:

感悟数学知识的内在联系,体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

教学重点和难点

教学重点:

掌握圆的面积的计算公式,能够正确地计算圆的面积,解决生活中的实际问题。

教学难点:

理解圆的面积公式的推导过程。

教学准备:

圆片、课件。

一键复制全文保存为WORD
相关文章