若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?一起看看新人教版七年级下册数学教案!欢迎查阅!读书是学习,摘抄是整理,写作是创造,如下是漂亮的编辑为大家整理的七年级数学教案最新9篇,欢迎参考阅读,希望能够帮助到大家。
教学目标:
1.借助数轴了解相反数的概念,知道互为相反数的位置关系。
2.给一个数,能求出它的相反数。
教学重点:理解相反数的意义。
教学难点:理解和掌握双重符号简化的规律。
教与学互动设计:
(一)创设情境,导入新课
活动 请一个学生到讲台前面对大家,向前走5步,向后走5步。
交流 如果向前走为正,那向前走5步与向后走5步分别记作什么?
(二)合作交流,解读探究
1.观察下列数:6和-6,2 和-2 ,7和-7, 和- ,并把它们在数轴上标出。
想一想 (1)上述各对数有什么特点?
(2)表示这四对数的点在数轴上有什么特点?
(3)你能够写出具有上述特点的n组数吗?
观察 像这样只有符号不同的两个数叫相反数。
互为相反数的两个数在数轴上的对应点(0除外)是在原点两旁,并且与原点距离相等的两个点。即:我们把a的相反数记为-a,并且规定0的相反数就是零。
总结 在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数。
2.在任意一个数前面添上“-”号,新的数就是原数的相反数。如-(+5)=-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0的相反数是0.
(三)应用迁移,巩固提高
【例1】填空
(1)-5.8是_____的相反数,_____的相反数是-(+3),a的相反数是_____;a-b的相反数是_____,0的相反数是_____.
(2)正数的相反数是_____,负数的相反数是_____,_____的相反数是它本身。
【例2】 下列判断不正确的有( )
①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点。
A.1个 B.2个 C.3个 D.4个
【例3】 化简下列各符号:
(1)-[-(-2)]; (2)+{-[-(+5)]};
(3)-{-{-…-(-6)}…}(共n个负号).
【归纳】 化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负。
【例4】 数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A的距离为2,则点B和点C各对应什么数?
(四)总结反思,拓展升华
【归纳】 (1)相反数的概念及表示方法。
(2)相反数的代数意义和几何意义。
(3)符号的化简。
(五)课堂跟踪反馈
夯实基础
1.判断题
(1)-3是相反数。( )
(2)-7和7是相反数。( )
(3)-a的相反数是a,它们互为相反数。( )
(4)符号不同的两个数互为相反数。( )
2.分别写出下列各数的相反数,并把它们在数轴上表示出来。
1,-2,0,4.5,-2.5,3
3.若一个数的相反数不是正数,则这个数一定是( )
A.正数 B.正数或0
C.负数 D.负数或0
4.一个数比它的相反数小,这个数是( )
A.正数 B.负数
C.非负数 D.非正数
5.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是_____
提升能力
6.若a与a-2互为相反数,则a的相反数是____
7.已知有理数m、-3、n在数轴上位置如图所示,将m、-3、n的相反数在数轴上表示出来,并将这6个数用“<”连接起来。
教学建议
一、重点、难点分析
本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。
正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0 ℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低155米记作-155米。由这两个实例很自然地,把大于0的数叫做正数,把加“-”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。
关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。
二、教法建议
这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的。从内容上讲,负数比非负数要抽象、难理解。因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数)。这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了。
为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。
三、正数与负数概念的理解
1﹒对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。
2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…
3﹒到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。
4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。
四、有理数的分类
整数和分数统称为有理数。1)正整数、零、负整数统称为整数;正分数、负分数统称为分数。
2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。
3)注意概念中所用“统称”二字,它与说“整数和分数是有理数”的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说“统称”还是不错,而用后一种说法就欠妥了。
4)分数和小数的区别:
分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。
5)到目前为止,所学过的数(除π外)都是有理数。
学习目标:
1、学会用计算器进行有理数的除法运算。
2、掌握有理数的混合运算顺序。
3、通过探究、练习,养成良好的学习习惯
学习重点:有理数的混合运算
学习难点:运算顺序的确定与性质符号的处理
教学方法:观察、类比、对比、归纳
教学过程
一、学前准备
1、计算
1)(—0.0318)÷(—1.4)2)2+(—8)÷2
二、探究新知
1、由上面的问题1,计算方便吗?想过别的方法吗?
2、由上面的问题2,你的计算方法是先算法,再算法。
3、结合问题1,阅读课本P36—P37页内容(带计算器的同学跟着操作、练习)
4、结合问题2,你先猜想,有理数的混合运算顺序应该是?
5、阅读P36,并动手做做
三、新知应用
1、计算
1)、18—6÷(—2)×2)11+(—22)—3×(—11)
3)(—0.1)÷×(—100)
2、师生小结
四、回顾与反思
请你回顾本节课所学习的主要内容
3页
五、自我检测
1、选择题
1)若两个有理数的和与它们的积都是正数,则这两个数()
A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数
2)下列说法正确的是()
A.负数没有倒数B.正数的倒数比自身小
C.任何有理数都有倒数D.-1的倒数是-1
3)关于0,下列说法不正确的是()
A.0有相反数B.0有绝对值
C.0有倒数D.0是绝对值和相反数都相等的数
4)下列运算结果不一定为负数的是()
A.异号两数相乘B.异号两数相除
C.异号两数相加D.奇数个负因数的乘积
5)下列运算有错误的是()
A.÷(-3)=3×(-3)B.
C.8-(-2)=8+2D.2-7=(+2)+(-7)
6)下列运算正确的是()
A.;B.0-2=-2;C.;D.(-2)÷(-4)=2
2、计算
1)6—(—12)÷(—3)2)3×(—4)+(—28)÷7
3)(—48)÷8—(—25)×(—6)4)
六、作业
1、P39第7题(4、5、7、8)、第8题
2、选做题:P39第10、11、12、1314、15题
教学内容
人教二年级下册教材第59~60页例1及第60页“做一做”。
内容简析
例1借助平均分物的操作活动,先进行恰好分完的操作活动,并用除法算式表示出来;再进行有剩余的操作活动,通过对比使学生体会其异同,帮助学生理解有剩余的情况,并用除法算式表示。通过与表内除法的对比,使学生理解余数及有余数的除法的含义。
教学目标
1、结合具体情境,经历认识余数的过程,理解有余数除法的意义。
2、通过主题图教学,让学生知道计算问题是从生活实际中产生,体会到生活中处处有数学。
3、培养学生的学习兴趣及初步的观察、概括能力。
教学重难点
理解余数及有余数除法的含义,能够准确求出余数。
教法与学法
1、本课时运用自主学习法,引导学生通过摆草莓的操作活动,使学生经历把物品平均分后有剩余的现象,抽象为有余数的除法的过程,理解有余数除法的含义。
2、本课时学生的学习主要是通过总结、归纳、抽象、概括等方法来学习。承前启后链
教学过程
一、情景创设,导入课题
故事描写法:周末小熊打算请2个好朋友到他家做客,加上小熊一共3人,他想请大家一起吃草莓。可是他打开冰箱一看,发现只有7个草莓,3人怎么分7个草莓呢?他很苦恼。聪明的小朋友们,你们知道他为什么苦恼吗?谁能来说一说?(不能把草莓平均分完)这就是我们今天要共同探究的内容——有余数的除法(板书)。【品析:把教材中的情景进行了改编,增加了课堂的趣味,吸引了学生的注意力,为新知教学做了充分的准备。】活动导入法:请同学们拿出10个小圆片。
①把10个圆片平均分成2份,每份有几个?
②把10个圆片平均分成3份,每份有几个?
(学生说法不一:有的说不能分,有的说分不出来)
这样的问题究竟应该怎样解决呢?这就是今天我们要学习的新内容,有余数的除法。(板书课题:有余数的除法)【品析:活动导入,让学生动手操作,每个学生都参与其中并思考没有刚好分完怎么办?于是激发了学生强烈的求知欲望,随着老师的引导进入新知的学习中。】
二、师生合作,探究新知
1、复习表内除法的意义。
平常我们分东西,有时候能正好平均分完,有时候不能正好分完,剩下的又不够再分。剩下不够再分的数就叫余数,这节课我们就一起来学习“有余数的除法”(出示课题)。
(1)课件出示6个草莓图:把下面这些草莓每2个摆一盘,摆一摆。
(2)学生交流获取信息。
(3)利用学具实际操作。
(4)用算式表示操作的过程。课件出示6个草莓摆放的结果图:
(5)小组内说说6÷2=3(盘),这个算式表示的意思。【品析:沟通操作过程、算式、语言表达之间的转换,使学生明白它们的意思是一样的,只是表达的形式不同。】2、理解有余数除法的含义。
(1)在动手操作中感受平均分时会出现有剩余的情况。
①课件出示7个草莓图:把下面这些草莓每2个摆一盘,摆一摆。
②学生利用学具操作。
③交流发现的问题:剩下一个草莓。
(2)在交流中确定表示平均分时有剩余的方法。
①学生用算式表示刚才摆的过程,教师巡视,选取典型案例。
②教师板书规范写法:
7÷2=3(盘)……1(个)
余数
③读作:7除以2等于3余1。写法:首先在等号的右面写商,然后点上6个小圆点再写上余数。
④交流算式表示的意思,7、3、2、1各表示什么?明确“1”是剩下的草莓数,我们把它叫余数。
(3)归纳总结,完善学生的认知结构。
①比较两次分草莓的相同点和不同点。②教师随学生的回答,用课件呈现下表。
分的物品几个一份分的结果算式表达
6个草莓每2个一盘分了3盘,正好分完6÷2=3(盘)
7个草莓每2个一盘分了3盘,还剩1个7÷2=3(盘)……1(个)
?品析:充分调动学生已有的经验,通过摆学具的直观方式让学生在与表内除法的对比中,理解余数及有余数除法的含义,给学生创设自主构建知识的空间。】
三、反馈质疑,学有所得
在学习完例1的基础上,引领学生及时消化吸收,请学生同桌之间互相叙述余数和有余数除法的含义。然后教师提出质疑问题,引领学生在解决问题的过程中,学会系统整理。
质疑一:什么是余数?余数的单位名称是什么?
学生讨论后归纳:当平均分一些物品有剩余且不够再分的时候,剩余的数叫余数。余数的单位名称和被除数的单位名称相同。
质疑二:什么是有余数的除法?
学生讨论后总结:带有余数的除法就是有余数的除法。
四、课末小结,融会贯通
本节课中,你有什么收获?聪明的你能帮老师简单总结一下刚刚我们都学习了哪些内容吗?
“本节课中,我们明白了平均分后有剩余可以用有余数的除法算式表示。也知道余数的单位名称和被除数的单位名称一样。”
五、教海拾遗,反思提升
本节课,我使用故事导入,通过小熊分草莓招待客人,草莓有剩余的情况,唤醒学生的生活经验,
让他们初步感受到余数就在自己的身边,体会余数的意义。
打破原有教学模式,组织学生开展自主、合作、探究的学习活动。老师和学生是平等的对话关系,真正把主体地位还给学生。当出示问题时,先让学生自己独立尝试分一分,在小组内交流自己是怎样做的,怎样想的,这样给学生充分的思考空间,让每个学生都能在趣味中学习,享受到成功的喜悦。
教学目的
1、了解一元一次方程的概念。
2、掌握含有括号的一元一次方程的解法。
重点、难点
1、重点:解含有括号的一元一次方程的解法。
2、难点:括号前面是负号时,去括号时忘记变号。
教学过程
一、复习提问
1、解下列方程:
(1)5x—2=8(2)5+2x=4x
2、去括号法则是什么?“移项”要注意什么?
二、新授
一元一次方程的概念。
如44x+64=328 3+x=(45+x)y—5=2y+1问:它们有什么共同特征?
只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程。
例1、判断下列哪些是一元一次方程
x= 3x—2 x—=—1
5x2—3x+1=0 2x+y=1—3y =5
例2、解方程(1)—2(x—1)=4
(2)3(x—2)+1=x—(2x—1)
强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“—”号,注意去掉括号,要改变括号内的每一项的符号。
补充:解方程3x—[3(x+1)—(1+4)]=1
说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。
三、巩固练习
教科书第9页,练习,1、2、3。
四、小结
学习了一元一次方程的概念,含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。
五、作业
1、教科书第12页习题6。
2、第1题。
教学目标
1.使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;
2.培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。
教学建议
1.重点和难点:正确地求出代数式的值。
2.理解代数式的值:
(1)一个代数式的值是由代数式中字母的取值而决定的.所以代数式的值一般不是一个固定的数,它会随着代数式中字母取值的变化而变化.因此在谈代数式的值时,必须指明在什么条件下.如:对于代数式n-2 ;当n=2 时,代数式n-2 的值是0;当n=4 时,代数式n-2 的值是2.
(2)代数式中字母的取值必须确保做到以下两点:①使代数式有意义,②使它所表示的实际数量有意义,如: 1/(x-1)中
不能取1,因为x=1 时,分母为零,式于1/(x-1) 无意义;如果式子中字母表示长方形的长,那么它必须大于0.
3.求代数式的值的一般步骤:
在代数式的值的概念中,实际也指明了求代数式的值的方法.即一是代入,二是计算.求代数式的值时,一要弄清楚运算符号,二要注意运算顺序.在计算时,要注意按代数式指明的运算进行.
4。求代数式的`值时的注意事项:
(1)代数式中的运算符号和具体数字都不能改变。
(2)字母在代数式中所处的位置必须搞清楚。
(3)如果字母取值是分数时,作乘方运算必须加上小括号,将来学了负数后,字母给出的值是负数也必须加上括号。
5.本节知识结构:
本小节从一个应用代数式的实例出发,引出代数式的值的概念,进而通过两个例题讲述求代数式的值的方法。
6.教学建议
(1) 代数式的值是由代数式里的字母所取的值决定的,因此在教学过程中,注意渗透对应的思想,这样有助于培养学生的函数观念.
(2) 列代数式是由特殊到一般, 而求代数式的值, 则可以看成由一般到特殊,在教学中,可结合前一小节,适当渗透关于特殊与一般的辨证关系的思想。
教学设计示例
代数式的值(一)
教学目标
1使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;
2培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。
教学重点和难点
重点和难点:正确地求出代数式的值
课堂教学过程设计
一、从学生原有的认识结构提出问题
1用代数式表示:(投影)
(1)a与b的和的平方;(2)a,b两数的平方和;
(3)a与b的和的50%?
2用语言叙述代数式2n+10的意义?
3对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)
某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?
若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?
最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50?我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值?这就是本节课我们将要学习研究的内容?
二、师生共同研究代数式的值的意义
1?用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值?
2?结合上述例题,提出如下几个问题:
(1)求代数式2x+10的值,必须给出什么条件?
(2)代数式的值是由什么值的确定而确定的?
当教师引导学生说出:“代数式的值是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象?
然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应?
(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?
下面教师结合例题来引导学生归纳,概括出上述问题的答案?(教师板书例题时,应注意格式规范化)
例1 当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值?
解:当x=7,y=4,z=0时,
x(2x-y+3z)=7×(2×7-4+3×0)
=7×(14-4)
=70?
注意:如果代数式中省略乘号,代入后需添上乘号?
学习目标:
1、会用正。负数表示具有相反意义的量。
2、通过正。负数学习,培养学生应用数学知识的意识。
3、通过探究,渗透对立统一的辨证思想
学习重点:
用正。负数表示具有相反意义的量
学习难点:
实际问题中的数量关系
教学方法:
讲练相结合
教学过程
一。学前准备
通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们。
问题1:“零”为什么即不是正数也不是负数呢?
引导学生思考讨论,借助举例说明。
参考例子:温度表示中的零上,零下和零度。
二。探究理解解决问题
问题2:(教科书第4页例题)
先引导学生分析,再让学生独立完成
例(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
(2)20xx年下列国家的商品进出口总额比上一年的变化情况是:
美国减少6.4%,德国增长1.3%,
法国减少2.4%,英国减少3.5%,
意大利增长0.2%,中国增长7.5%。
写出这些国家20xx年商品进出口总额的增长率。
解:(1)这个月小明体重增长2kg,小华体重增长—1kg,小强体重增长0kg.
(2)六个国家20xx年商品进出口总额的增长率:
美国—6.4%,德国1.3%,
法国—2.4%,英国—3.5%,
意大利0.2%,中国7.5%。
三。巩固练习
从0表示一个也没有,是正数和负数的分界的角度引导学生理解。
在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念。
在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示。
通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值。
四。阅读思考1页
(教科书第8页)用正负数表示加工允许误差。
问题:1.直径为30.032mm和直径为29.97的零件是否合格?
2、你知道还有那些事件可以用正负数表示允许误差吗?请举例。
五。小结
1、本节课你有那些收获?
2、还有没解决的问题吗?
六。应用与拓展
1、必做题:
教科书5页习题4.5.:6.7.8题
2、选做题
1)。甲冷库的温度是—12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度是。
2、)一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?
教学目标
1.知识与能力目标
(1)二元一次方程和一次函数的关系。
(2)二元一次方程组的图象解法。
(3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法。同时培养学生初步的数形结合的意识和能力。
2.情感态度价值观目标
通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发了学生学习数学的兴趣,使学生体验数学活动充满探索与创造。
教材分析
前面已经分别学习了一次函数和二元一次方程组,这节课研究二元一次方程组(数)和一次函数(形)的关系,是这两章知识的综合运用。强化了部分与整体的内在联系,知识与知识的内在联系,并为今后解析几何的学习奠定基础。
教学重点
1、二元一次方程和一次函数的关系。
2、能根据一次函数的图象求二元一次方程组的近似解。
教学难点
方程和函数之间的对应关系即数形结合的意识和能力。
教学方法
学生操作自主探索的方法
学生通过自己操作和思考,结合新旧知识的联系,自主探索出方程与图象之间的对应关系,以引入二元一次方程组的图象解法,同时也建立了“数”二元一次方程组和“形”函数的图象(直线)之间的对应关系,培养了学生数形结合的意识和能力。
教学过程
一.故事引入
迪卡儿的故事蜘蛛给予的启示
十七世纪法国数学家迪卡儿有一次生病卧床,他看见屋顶上的一只蜘蛛顺着丝左右爬行。迪卡儿看到蜘蛛的“表演”猛的机灵一动。他想,可以把蜘蛛看成一个点,它可以上、下、左、右运动,能不能把蜘蛛的位置用一组数确定下来呢?
在蜘蛛爬行的启示下,迪卡儿创建了直角坐标系,在坐标系下几何图形(形)和方程(数)建立联系。迪卡儿坐标系起到了桥梁和纽带的作用。从而我们可以把图形化成方程来研究,也可以用图象来研究方程。
这节课我们就来研究二元一次方程(数)与一次函数(形)的关系。
二.尝试探疑
1 、 Y=x+1
你们把我叫一次函数,我也是二元一次方程啊!这是怎么回事,你知道吗?
学生先是疑惑:方程就是方程,函数就是函数,它们能有什么联系呢?然后通过思考、交流,最后恍然大悟。初步感受一次函数与二元一次方程的内在联系。
2、函数y=x+1上的任意一点的坐标是否满足方程xy=1?
以方程xy=1的解为坐标的点在不在函数y=x+1的图象上?方程xy=1与函数y=x+1有何关系?
学生会迫不及待地拿起笔来计算。从函数y=x+1图象上找几个点看它们的坐标是否满足方程xy=1。结果都满足。然后学生就会自主和同伴交流,问一问同伴函数y=x+1图象上的点满足不满足方程xy=1。结果也都满足。这样他们就会搭成共识:函数y=x+1上的任意一点的坐标都满足方程xy=1。
然后学生会用同样的方法得出另一个结论:以方程xy=1的解为坐标的点一定在函数y=x+1的图象上。然后开始思索函数y=x+1和方程xy=1到底有何关系呢?通过交流自动得出结论:以方程xy=1的解为坐标的点组成的图象与一次函数y=x+1的图象相同。
3、在同一坐标系下,化出y=x+1与y=4x2的图象,他们的交点坐标是什么?
方程组y=x+1的解是什么?二者有何关系?
y=4x2
学生根据画图象的方法画出两函数图象,画出交点坐标。用消元法解出方程组的解。学生会大吃一惊:两者出奇地相近或者干脆就相同。这是怎么回事呢?然后开始探究二者关系。通过交流、讨论得出结论:函数y=x+1和y=4x2的交点坐标就是由两个函数表达式组成的方程组
y=x+1的解。
Y=4x2
教师作最后总结:因为函数和方程有以上关系,所以我们就可以用图象法解决方程问题,也可以用方程的方法解决图象问题。
三.方程与函数关系的应用
解方程组x2y=2
2xy=2
学生会很快的用消元法解出来。
老师发问:谁还有其他的方法?如果有,鼓励学生大胆提出。并给予口头表扬。如果没有人用其他的方法,老师提出问题:你能不能用图象的方法求方程组的解呢?这时,学生就会去探索新的思路、方法。
一回忆方程与函数的关系,有了!方程组的解不就是两个方程变形得到的两个函数图象的交点坐标吗?学生就会迅速动笔用这种方法把方程解出来。作完之后,互相交流。学生总结一下做题步骤:
1、把两个方程都化成函数表达式的形式。
2、画出两个函数的图象。
3、画出交点坐标,交点坐标即为方程组的解。
问题又出来了,有的同学的解是x=2有的同学的解是x=2.1 y=2.1
y=1.9有的同学的解是……虽然都和消元法得到的结果相近,但各不相同。
老师提问:你能说一下用图象法解方程组的不足吗?
学生争先恐后的回答:用这种方法求的解是近似值。不准确。学生提出疑问:既然不准确,那学习它有什么用呢?用消元法就足够了!
教师解释一下:在现实生活和生产中,我们会遇到特别复杂的方程,用消元法解不太容易,我们就可以用电脑绘制成函数图象,很容易找出交点坐标。教师可以用Z+Z智能教育平台演示一下。
[点评]用作图象的方法解方程组,这体现了两个知识点的内在联系。学数学知识,探索知识点之间的联系,可起到化新为旧的作用,达到事半功倍的效果。逐步让学生学会这种学习新知识的技巧。
四.引申
方程组x+y=2
x+y=5解的情况如何?你能从函数的角度解释一下吗?
学生用消元法开始解方程组,结果无解,怎么回事呢?学生会尝试运用方程组的图象解法。画出两个函数图象。答案有了!图象是平行的,没有交点。所以方程组无解了。哇!太神奇了!方程的问题可以用图象的方法解决了。
[点评]因为有了上面的用作图象法解方程组,在这里,学生就会自觉地从函数的角度探究方程的问题,初步具有了数形结合的意识和能力。
五.课后小结
本节课我们通过操作和思考,揭示了二元一次方程和函数图象之间的对应关系,从而引入二元一次方程组的图象解法,同时也建立了“数”二元一次方程与“形”函数图象之间的对应关系,培养了学生初步的数形结合的意识和能力。
六.作业
1、用作图象法解方程组2x+y=4
2x3y=12
2、如图,直线L、L相交于点A,试求出A点坐标
这节课由故事引入,激发了学生极大的学习兴趣。然后提出了三个尖锐的问题,让学生尝试探索,在探索中既体会到了探索的艰辛,又体会到了成功的喜悦。在应用和引申过程中,尽量让学生自主的发现问题,自主的解决问题。学生在紧张、愉快中完成了这节课的学习。
《整式的加减》教案
一、三维目标。
(一)知识与技能。
能运用运算律探究去括号法则,并且利用去括号法则将整式化简。
(二)过程与方法。
经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。
(三)情感态度与价值观。
培养学生主动探究、合作交流的意识,严谨治学的学习态度。
二、教学重、难点与关键。
1、重点:去括号法则,准确应用法则将整式化简。
2、难点:括号前面是—号去括号时,括号内各项变号容易产生错误。
3、关键:准确理解去括号法则。
三、教具准备。
投影仪。
四、教学过程,课堂引入。
利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?
五、新授。
现在我们来看本章引言中的问题:
在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为100t+120(t-0.5)千米①冻土地段与非冻土地段相差100t—120(t-0.5)千米②上面的式子①、②都带有括号,它们应如何化简?
利用分配律,可以去括号,合并同类项,得:
100t+120(t-0.5)=100t+120t+120(-0.5)=220t-60