作为一名教学工作者,通常会被要求编写教案,编写教案助于积累教学经验,不断提高教学质量。那么大家知道正规的教案是怎么写的吗?读书之法,在循序而渐进,熟读而精思,这里是爱岗敬业的小编给大伙儿收集整理的12篇初中七年级数学教案。
一、教学内容分析
这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的方法。日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。通过问题情境类比得到数轴的概念,是这节课的主要学习方法。同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础。
二、学生学习情况分析
(1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述;
(2)学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析;
(3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。
三、设计思想
从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。
四、教学目标
(一)知识与技能
1、掌握数轴的三要素,能正确画出数轴。
2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。
(二)过程与方法
1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。
2、对学生渗透数形结合的思想方法。
(三)情感、态度与价值观
1、使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点。
2、通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。
五、教学重点及难点
1、重点:正确掌握数轴画法和用数轴上的点表示有理数。
2、难点:有理数和数轴上的点的对应关系。
六、教学建议
1、重点、难点分析
本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。
2、知识结构
有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的方法,本课知识要点如下:
定义规定了原点、正方向、单位长度的直线叫数轴
三要素原点正方向单位长度
应用数形结合
七、学法引导
1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法。
2、学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习。
八、课时安排
1课时
九、教具学具准备
电脑、投影仪、三角板
十、师生互动活动设计
讲授新课
(出示投影1)
问题1:三个温度计.其中一个温度计的液面在0上2个刻度,一个温度计的液面在0下5个刻度,一个温度计的'液面在0刻度.
师:三个温度计所表示的温度是多少?
生:2℃,-5℃,0℃.
问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(小组讨论,交流合作,动手操作)
师:我们能否用类似的图形表示有理数呢?
师:这种表示数的图形就是今天我们要学的内容—数轴(板书课题).
师:与温度计类似,我们也可以在一条直线上画出刻度,标上读
数,用直线上的点表示正数、负数和零.具体方法如下
(边说边画):
1.画一条水平的直线,在这条直线上任取一�
【教法说明】
通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力.
师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习
尝试反馈,巩固练习
(出示投影3).画出数轴并表示下列有理数:
1、1.5,-2.2,-2.5,,,0.
2.写出数轴上点A,B,C,D,E所表示的数:
请大家回答下列问题:
(出示投影4)
(1)有人说一条直线是一条数轴,对不对?为什么?
(2)下列所画数轴对不对?如果不对,指出错在哪里?
【教法说明】
此组练习的目的是巩固数轴的概念.
十一、小结
本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.
十二、课后练习
习题1.2第2题
十三、教学反思
1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。
2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。
3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。
一、教材分析:
反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。
二、教学目标分析
根据二期课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。
因此把教学目标确定为:1.掌握反比例函数的概念,能够根据已知条件求出反比例函数的解析式;学会用描点法画出反比例函数的图象;掌握图象的特征以及由函数图象得到的函数性质。2.在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。3.通过学习培养学生积极参与和勇于探索的精神。
三、教学重点难点分析
本堂课的重点是掌握反比例函数的定义、图象特征以及函数的性质;
难点则是如何抓住特征准确画出反比例函数的图象。
为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。
四、教学方法
鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨论——交流——总结”的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。
五、学法指导
本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。
六、教学过程
(一)复习引入——反函数解析式
练习1:写出下列各题的关系式:
(1)正方形的周长C和它的一边的长a之间的关系
(2)运动会的田径比赛中,运动员小王的平均速度是8米/秒,他所跑过的路程s和所用时间t之间的关系
(3)矩形的面积为10时,它的长x和宽y之间的关系
(4)王师傅要生产100个零件,他的工作效率x和工作时间t之间的关系
问题1:请大家判断一下,在我们写出来的这些关系式中哪些是正比例函数?
问题1主要是复习正比例函数的定义,为后面学生运用对比的方法给出反比例函数的定义打下基础。
问题2:那么请大家再仔细观察一下,其余两个函数关系式有什么共同点吗?
通过问题2来引出反比例函数的解析式,请学生对比正比例函数的定义来给出反比例函数的定义,这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的对比和探究能力。
例题1:已知变量y与x成反比例,且当x=2时,y=9
(1)写出y与x之间的函数解析式
(2)当x=3.5时,求y的值
(3)当y=5时,求x的值
通过对例1的学习使学生掌握如何根据已知条件来求出反比例函数的解析式。在解题过程中,引导学生运用在求正比例函数的解析式时用到的“待定系数法”,先设反比例函数为,再把相应的x,y值代入求出k,k值的确定,函数解析式也就确定了。
课堂练习:已知x与y成反比例,根据以下条件,求出y与x之间的函数关系式
(1)x=2,y=3 (2)x= ,y=
通过此题,对学生掌握如何根据已知条件去求反比例函数的解析式的学习情况做一个简单的反馈。
(二)探究学习1——函数图象的画法
问题3:如何画出正比例函数的图象?
通过问题3来复习正比例函数图象的画法主要分为列表、描点、连线三个步骤,为学习反比例函数图像的画法打下基础。
问题4:那反比例函数的图象应该怎样去画呢?
在教学过程中可以引导学生仿照正比例函数图象的的画法。
设想的教学设计是:
(1)引导学生运用在画正比例函数图象中所学到的方法,分小组讨论尝试,采用列表、描点、连线的方法画出函数和的图象;
(2)老师边巡视,边指导,用实物投影仪反映一些学生在函数图象中出现的典型错误,和学生一起找出错误的地方,分析原因;
(3)随后老师在黑板上演示画好反比例函数图像的步骤,展示正确的函数图象,引导学生观察其图象特征(双曲线有两个分支)。
初二学生是首次接触到双曲线这种比较特殊函数图象,设想学生可能会在下面几个环节中出错:
(1)在“列表”这一环节
在取点时学生可能会取零,在这里可以引导学生结合代数的方法得出x不能为零。也可能由于在取点时的不恰当,导致函数图象的不完整、不对称。在这里应该要指导学生在列表时,自变量x的取值可以选取绝对值相等而符号相反的数,相应的就得到绝对相等而符号相反的对应的函数值,这样可以简化计算的手续,又便于在坐标平面内找到点。
(2)在“连线”这一环节
学生画的点与点之间连线可能会有端点,未能用光滑的线条连接。因而在这里要特别要强调在将所选取的点连结时,应该是“光滑曲线”,为以后学习二次函数的图像打下基础。为了使函数图象清晰明显,可以引导学生注意尽量选取较多的自变量x的值和对应的函数值y,以便在坐标平面内得到较多的“点”,画出曲线。
从而引导学生画出正确的函数图象。
(3)图象与x轴或y轴相交
在这里我认为可以埋下一个伏笔,给学生留下一个悬念,为后面学习函数的性质打下基础。
需要说明的是:利用多媒体课件学习能吸引学生的注意力,引起学生进一步学习的兴趣。不过,尽管多媒体的演示既快又准确,我认为在学生第一次学画反比例函数图象的过程中,老师还是应该在黑板上认真示范画出图象的每一个步骤,毕竟多媒体还是不能替代我们平时老师在黑板上板书。
巩固练习:画出函数和的图象
通过巩固练习,让学生再次动手画出函数图象,改正在初次画图象时出现在一些问题。老师使用函数图象的课件,用屏幕显示的函数图象验证学生画出的函数图象的准确性。
(三)探究学习2——函数图象性质
1、图象的分布情况
问题5:请大家回忆一下正比例函数的分布情况是怎么样的呢?
提出问题5主要是起到巩固复
问题6:观察刚才所画的图象我们发现反比例函数的图象有两个分支,那么它的分布情况又是怎么样的呢?
在这一环节中的设计:
(1)引导学生对比正比例函数图象的分布,启发他们主动探索反比例函数的分布情况,给学生充分考虑的时间;
(2)充分运用多媒体的优势进行教学,使用函数图象的课件试着任意输入几个k的值,观察函数图象的不同分布,观察函数图象的动态演变过程。把不同的函数图象集中到一个屏幕中,便于学生对比和探究。学生通过观察及对比,对反比例函数图象的分布与k的关系有一个直观的了解;
(3)组织小组讨论来归纳出反比例函数的一条性质:当k>0时,函数图象的两支分别在第一、三象限内;当k<0时,函数图象的两支分别在第二、四象限内。
2、图象的变化情况
问题7:正比例函数图象的变化情况是怎么样的呢?
提出问题7主要是起到巩固复
问题8:那反比例函数的图象,是否也具有这样的性质呢?
在这一环节的教学设计是:
(1)回顾反比例函数和的图象,通过实际观察;
(2)根据解析式对行取值,比较x在取不同值时函数值的变化情况;
(3)电脑演示及学生小组讨论,请学生给出结论。即这个问题必须分成两种情况讨论即当k>0时,自变量x逐渐增大时,y的值则随着逐渐减小;当k<0时,自变量x逐渐增大时,y的值也随着逐渐增大。
(4)对于学生做出的结论,老师应该要给予肯定,同时可以提出:有没有同学需要补充的呢?若没有,则可以举例:当k>0,分别比较在第三象限x=-2,第一象限x=2时的y的值的大小,则以上性质是否依然成立?学生的回答应该是:不成立。这时老师再请学生做小结:必须限定在每一个象限内,才有以上性质成立。
问题9:当函数图象的两个分支无限延伸时,它与x轴、y轴相交吗?为什么?
在这个环节中,可以结合刚才学生所画的错误图象,引导学生可以通过代数的方法分析反比例函数的解析式,由分母不能为零,得x不能为零。由k≠0,得y必不为零,从而验证了反比例函数的图象。当两个分支无限延伸时,可以无限地逼近x轴、y轴,但永远不会与两轴相交。随即强调画图时要注意准确性。
(四)备用思考题
1、反比例函数的图象在第一、三象限,求a的取值范围
2、
(1)当m为何值时,y是x的正比例函数
(2)当m为何值时,y是x的反比例函数
(五) 小结:
一、素质教育目标
(一)知识教学点
使学生会根据一个锐角的正弦值和余弦值,查出这个锐角的大小。
(二)能力训练点
逐步培养学生观察、比较、分析、概括等逻辑思维能力。
(三)德育渗透点
培养学生良好的学习习惯。
二、教学重点、难点和疑点
1、重点:由锐角的正弦值或余弦值,查出这个锐角的大小。
2、难点:由锐角的正弦值或余弦值,查出这个锐角的大小。
3、疑点:由于余弦是减函数,查表时“值增角减,值减角增”学生常常出错。
三、教学步骤
(一)明确目标
1、锐角的。正弦值与余弦值随角度变化的规律是什么?
这一规律也是本课查表的依据,因此课前还得引导学生回忆。
答:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小);当角度在0°~90°间变化时,余弦值随角度的增大(或减小)而减小(或增大)。
2、若cos21°30′=0.9304,且表中同一行的修正值是则cos21°31′=______,cos21°28′=______。
3、不查表,比较大小:
(1)sin20°______sin20°15′;
(2)cos51°______cos50°10′;
(3)sin21°______cos68°。
学生在回答2题时极易出错,教师一定要引导学生叙述思考过程,然后得出答案。
3题的设计主要是考察学生对函数值随角度的变化规律的理解,同时培养学生估算。
(二)整体感知
已知一个锐角,我们可用“正弦和余弦表”查出这个角的正弦值或余弦值。反过来,已知一个锐角的正弦值或余弦值,可用“正弦和余弦表”查出这个角的大小。因为学生有查“平方表”、“立方表”等经验,对这一点必深信无疑。而且通过逆向思维,可能很快会掌握已知函数值求角的方法。
(三)重点、难点的学习与目标完成过程。
例8已知sinA=0.2974,求锐角A。
学生通过上节课已知锐角查其正弦值和余弦值的经验,完全能独立查得锐角A,但教师应请同学讲解查的过程:从正弦表中找出0.2974,由这个数所在行向左查得17°,由同一数所在列向上查得18′,即0.2974=sin17°18′,以培养学生语言表达能力。
解:查表得sin17°18′=0.2974,所以
锐角A=17°18′。
例9已知cosA=0.7857,求锐角A。
分析:学生在表中找不到0.7857,这时部分学生可能束手无策,但有上节课查表的经验,少数思维较活跃的学生可能会想出办法。这时教师让学生讨论,在探讨中寻求办法。这对解决本题会有好处,使学生印象更深,理解更透彻。
若条件许可,应在讨论后请一名学生讲解查表过程:在余弦表中查不到0.7857。但能找到同它最接近的数0.7859,由这个数所在行向右查得38°,由同一个数向下查得12′,即0.7859=cos38°12′。但cosA=0.7857,比0.7859小0.0002,这说明∠A比38°12′要大,由0.7859所在行向右查得修正值0.0002对应的角度是1′,所以∠A=38°12′+1′=38°13′。
解:查表得cos38°12′=0.7859,所以:
0.7859=cos38°12′。
值减0.0002角度增1′
0.7857=cos38°13′,即锐角A=38°13′。
例10已知cosB=0.4511,求锐角B。
例10与例9相比较,只是出现余差(本例中的0.0002)与修正值不一致。教师只要讲清如何使用修正值(用最接近的值),以使误差最小即可,其余部分学生在例9的基础上,可以独立完成。
解:0.4509=cos63°12′
值增0.0003角度减1′
0.4512=cos63°11′
∴锐角B=63°11′
为了对例题加以巩固,教师在此应设计练习题,教材P。15中2、3。
2、已知下列正弦值或余弦值,求锐角A或B:
(1)sinA=0.7083,sinB=0.9371,sinA=0.3526,sinB=0.5688;
(2)cosA=0.8290,cosB=0.7611,cosA=0.2996,cosB=0.9931。
此题是配合例题而设置的,要求学生能快速准确得到答案。
(1)45°6′,69°34′,20°39′,34°40′;
(2)34°0′,40°26′,72°34′,6°44′。
3、查表求sin57°与cos33°,所得的值有什么关系?
此题是让学生通过查表进一步印证关系式sinA=cos(90°-A),cosA=0.8387,∴sin57°=cos33°,或sin57°=cos(90°-57°),cos33°=sin(90°-33°)。
(四)总结、扩展
本节课我们重点学习了已知一个锐角的正弦值或余弦值,可用“正弦和余弦表”查出这个锐角的大小,这也是本课难点,同学们要会依据正弦值和余弦值随角度变化规律(角度变化范围0°~90°)查“正弦和余弦表”。
四、布置作业
教材复习题十四A组3、4,要求学生只查正、余弦。
五、板书设计
14.1正弦和余弦(五)
例8例9例10
教学目标
(一)教学知识点
1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。
3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
(二)能力训练要求
1、经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。
2、通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。
3、通过学生共同观察和讨论,培养大家的合作交流意识。
(三)情感与价值观要求
1、经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
2、具有初步的创新精神和实践能力。
教学重点
1、体会方程与函数之间的联系。
2、理解何时方程有两个不等的实根,两个相等的实数和没有实根。
3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
教学难点
1、探索方程与函数之间的联系的过程。
2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
教学方法
讨论探索法。
教具准备
投影片二张
第一张:(记作§2.8.1A)
第二张:(记作§2.8.1B)
教学过程
Ⅰ。创设问题情境,引入新课
[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系。当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。
现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。
通过学生的讨论,使学生更清楚以下事实:
(1)分解因式与整式的乘法是一种互逆关系;
(2)分解因式的结果要以积的形式表示;
(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;
(4)必须分解到每个多项式不能再分解为止。
活动5:应用新知
例题学习:
P166例1、例2(略)
在教师的引导下,学生应用提公因式法共同完成例题。
让学生进一步理解提公因式法进行因式分解。
活动6:课堂练习
1.P167练习;
2、看谁连得准
x2-y2 (x+1)2
9-25 x 2 y(x -y)
x 2+2x+1 (3-5 x)(3+5 x)
xy-y2 (x+y)(x-y)
3、下列哪些变形是因式分解,为什么?
(1)(a+3)(a -3)= a 2-9
(2)a 2-4=( a +2)( a -2)
(3)a 2-b2+1=( a +b)( a -b)+1
(4)2πR+2πr=2π(R+r)
学生自主完成练习。
通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。
活动7:课堂小结
从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?
学生发言。
通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。
活动8:课后作业
课本P170习题的第1、4大题。
学生自主完成
通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。
板书设计(需要一直留在黑板上主板书)
15.4.1提公因式法例题
1、因式分解的定义
2、提公因式法
一、 基本情况分析
1、学生情况分析
这学期我承担七(1)(2)两班的数学教学,这些学生整体基础参差不齐,小学没有养成良好的学习习惯,所以任务艰巨。在小学所学知识的掌握程度上,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,但位数不多。对多数学生来说,简单的基础知识还不能有效掌握,成绩稍差。学生的逻辑推理、逻辑思维能力,计算能力要得到加强,还要提升整体成绩,适时补充课外知识,拓展学生的知识面,抽出一定的时间给强化几何训练,全面提升学生的数学素质。
2、教材分析:
1、第1章有理数:本章主要学习有理数的基本性质及运算。本章重点内容是有理数的概念,性质和运算。本章的难点在于理解有理数的基本性质、运算法则,并将它们应用到解决实际问题和计算中。
2、第2章整式的加减:本章主要是学习单项式和多项式的加减运算。本章重点内容是单项式、多项式、同类项的概念;合并同类项及去括号的法则及整式的加减运算。本章难点在于理解合并同类项和去括号的法则。
3、第3章一元一次方程:本章主要学习一元一次方程的概念、等式的基本性质、一元一次方程的解法及应用。本章重点内容是理解等式的基本性质;掌握解一元一次方程的一般步骤;列方程解决实际问题的基本思路。本章难点在于解一元一次方程,并利用一元一次方程解决简单的实际问题。
4、第4章几何图形初步:本章主要学习线段和角有关的性质。本章的重点是区别直线、射线、线段,角的有关性质和计算;理解互为余角、互为补角的性质及应用。本章的难点在于线段和角的有关计算。
二、 教学目标和要求
(一)知识与技能
1、获得数学中的基本理论、概念、原理和规律等方面的知识,了解并关注这些知识在生产、生活和社会发展中的应用。
2、学会将实践生活中遇到的实际问题转化为数学问题,从而通过数学问题解决实际问题。体验几何定理的探究及其推理过程并学会在实际问题进行应用。
3、初步具有数学研究操作的基本技能,一定的科学探究和实践能力,养成良好的科学思维习惯。
(二)过程与方法
1、采用思考、类比、探究、归纳、得出结论的方法进行教学;
2、发挥学生的主体作用,作好探究性活动;
3、密切联系实际,激发学生的学习的积极性,培养学生的类比、归纳的能力、
(三)情感态度与价值观
1、理解人与自然、社会的密切关系,和谐发展的主义,提高环境保护意识。
2、逐步形成数学的基本观点和科学态度,为确立辩证唯物主义世界观奠定必在的基础。
三、 提高教学质量的主要措施
1、认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作考试试试卷,也让学生学会认真学习。
2、兴趣是最好的老师,激发学生的兴趣,给学生介绍数学家、数学史、介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流的氛围,分享快乐的学习课堂,让学生体会学习的快乐,享受学习。
4、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
5、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
6、加强学生解题速度和准确度的培养训练,在新授课时,凡是能当堂完成的作业,要求学生比速度和准确度,谁先完成谁就先交给老师批改,凡是做的全对的依次获得前十名,以资鼓励。
7、加强个别辅导,加强面批、面改,加强定时作业的训练。并进行作业展览,对作业书写的好又全部正确的贴在学习园地中。
8、积极主动的与其他教师协同配合,认真钻研教材,搞好集体备课。
教学目标
1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;
2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;
3, 体验分类是数学上的常用处理问题的方法。
教学难点
正确理解分类的标准和按照一定的标准进行分类
知识重点
正确理解有理数的概念
教学过程(师生活动)
探索新知 在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’按照书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来。
“统称”是指“合起来总的名称”的意思.
试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是 学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会
练一练 :
1、任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2、教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
也可以教师说出一些数,让学生进行判断。
集合的概念不必深入展开。
创新探究 问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数 这个分类可视学生的程度确定是否有必要教学。
应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等
小结与作业
课堂小结 到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
学习目标:1、理解有理数的绝对值和相反数的意义。
2、会求已知数的相反数和绝对值。
3、会用绝对值比较两个负数的大小。
4、经历将实际问题数学化的过程,感受数学与生活的联系。
学习重点:1.会用绝对值比较两个负数的大小。
2、会求已知数的相反数和绝对值。
学习难点:理解有理数的绝对值和相反数的意义。
学习过程:
一、创设情境
根据绝对值与相反数的意义填空:
1、
2、
-5的相反数是______,-10.5的相反数是______, 的相反数是______;
3、|0|=______,0的相反数是______。
二、探索感悟
1、议一议
(1)任意说出一个数,说出它的绝对值、它的相反数。
(2)一个数的绝对值与这个数本身或它的相反数有什么关系?
2、想一想
(1)2与3哪个大?这两个数的绝对值哪个大?
(2)-1与-4哪个大?这两个数的绝对值哪个大?
(3)任意写出两个负数,并说出这两个负数哪个大?他们的绝对值哪个大?
(4)两个有理数的大小与这两个数的绝对值的大小有什么关系?
三。例题精讲
例1. 求下列各数的绝对值:
+9,-16,-0.2,0.
求一个数的绝对值,首先要分清这个数是正数、负数还是0,然后才能正确地写出它的绝对值。
议一议:(1)两个数比较大小,绝对值大的那个数一定大吗?
(2)数轴上的点的大小是如何排列的?
例2比较-10.12与-5.2的大小。
例3.求6、-6、14 、-14 的绝对值。
小节与思考:
这节课你有何收获?
四。练习
1、 填空:
⑴ 的符号是 ,绝对值是 ;
⑵10.5的符号是 ,绝对值是
⑶符号是+号,绝对值是 的数是
⑷符号是-号,绝对值是9的数是 ;
⑸符号是-号,绝对值是0.37的数是 。
2、 正式足球比赛时所用足球的质量有严格的规定,下表是6个足球的质量检测结果(用正数记超过规定质量的克数,用负数记不足规定质量的克数)。
请指出哪个足球质量最好,为什么?
第1个第2个第3个第4个第5个第6个
-25-10+20+30+15-40
3、比较下面有理数的大小
(1)-0.7与-1.7 (2) (3) (4)-5与0
五、布置作业:
P25 习题2.3 5
家庭作业:《评价手册》 《补充习题》
六、学后记/教后记
教学目标
1、掌握绝对值的概念,有理数大小比较法则。
2、学会绝对值的计算,会比较两个或多个有理数的大小。
3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。
教学难点
两个负数大小的比较
知识重点绝对值的概念
教学过程
(师生活动)设计理念
设置情境
引入课题星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向
学生回答后,教师说明如下:
数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|
例如,上面的问题中|20|=20,|—10|=10显然,|0|=0这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。为引入绝对值概念做准备。并使学生体验数学知识与生活实际的联系。
教学目标
使学生进一步理解立方根的概念,并能熟练地进行求一个数的立方根的运算;
能用有理数估计一个无理数的大致范围,使学生形成估算的意识,培养学生的估算能力;
经历运用计算器探求数学规律的过程,发展合情推理能力。
教学难点
用有理数估计一个无理的大致范围。
知识重点
用有理数估计一个无理的大致范围。
对于计算器的使用,在教学中采用学生自己阅读计算器的说明书、自己操作练习来掌握用计算器进行开立方运算的方法,并让学生互相交流,让学生亲身体会到利用计算器不仅能给运算带来很大的方便,也给探求数量间的关系与变化带来方便。在教学过程中,教师要关注学生能否通过阅读,掌握用计算器进行开立方运算的简单操作;能否利用计算器探究数量间的关系,从而寻找出数量的变化关系。
使用计算器进行复杂运算,可以使学生学习的重点更好地集中到理解数学的本质上来,而估算也是一种具有实际应用价值的运算能力,在本节课的课堂教学中综合运用笔算、计算器和估算等培养学生的运算能力。
1.1正数和负数
教学目的:
(一)知识目标:
1.了解正数和负数是怎样产生的。
2.知道什么是正数和负数。
3.理解数0表示的量的意义。
(二)能力目标:
1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量化方法。
2.会用正、负数表示具有相反意义的量。
(三)情感态度与价值观:
通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:知道什么是正数和负数,理解数0表示的量的意义。
教学难点:理解负数,数0表示的量的意义。
教学方法:师生互动
教学过程:
一、创设情境:
1.活动:请两名同学分别记录一周的每天的最高气温,老师念,学生写: -5℃、3℃、2℃、-1℃、-6℃、7℃、4℃、
比一比,怎样记录又快又简便!
[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。
二、新课:
1.自然数的产生、分数的产生。
2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。
3、正数、负数的定义:
2.判断下列各说法是否正确,错误的改正过来.
(1)单项式-xy2的系数是0,次数是2.【-1、3】
(2)单项式27a2的系数是2,次数是9.【√】22xny
(3)单项式-的系数是-,次数是n+1.【√】 33
3.请你写出系数为-1,含有x、y,次数为4的所有单项式。
4.课本第56页练习1、2题.
四、课堂小结
1.什么叫单项式?举例说明.
2.单独的一个数或一个字母是单项式吗?x是单项式吗?为什么?
3.什么叫单项式的系数?什么叫单项式的次数?举例说明.
五、作业布置
1.课本第59页至第60页,习题
2.1第1、2、8题.
一、教学内容:
人教版教材五年级上册第五单元多边形的面积整理与复习
二、教学目标:
1、使学生进一步熟练掌握已学图形各面积公式,能灵活地应用多种方法解决生活中简单的有关平面图形面积的实际问题。
2、使学生感受数学方法和思想的重要性及其应用的广泛性。体会数学的价值,培养对数学学习的热爱
三、教学重、难点
重点:使学生进一步熟练掌握已学图形各面积公式,能灵活地应用多种方法解决生活中简单的有关平面图形面积的实际问题。
难点:引导学生整理多边形面积的推导过程,掌握转化的数学思想方法,建构知识网络。
四、教学准备:多媒体课件,多边形纸模
五、教学步骤与过程
(一)导入复习
师:同学们,我们学过哪些平面图形的面积计算公式?(正方形、长方形、平行四边形、三角形、梯形)
师:这节课我们就来重点整理和复习有关这些多边形的面积的知识。
板书课题:多边形面积计算复习课
(二)回顾整理,建构网络
1.复习平行四边形、三角形、梯形面积公式的推导过程。
⑴请大家回忆一下:平行四边形、三角形、梯形面积的计算公式是怎样经过平移、旋转等方法转化成我们已经学过的图形,从而推导出它们的面积计算公式的。
⑵根据学生的回答,出示每个公式的推导过程。
六、课堂练习
学生独立计算。指名学生板演,集体订正七、说一说,你学会了什么?从整理图中能看出各种图形之间的关系吗?
七,作业布置:练习十九
板书设计
S=ah÷2
S=abS=ah
S=(a+b)h÷2
课题应用举例中的2
活动引例应用举例中的4(学生练习)
概念