高二年级数学优秀教案【18篇】

在教学工作者开展教学活动前,需要进行教案编写工作,编写教案有利于老师们准确把握教材的重点与难点,进而选择恰当的教学方法。

高二数学公开课优秀教案 1

【教材分析】

1、知识内容与结构分析

集合论是现代数学的一个重要的基础。在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础,集合论以及它所反映的数学思想在越来越广泛的领域中得到应用。课本从学生熟悉的集合(自然数集合、有理数的集合等)出发,结合实例给出了元素、集合的含义,学生通过对具体实例的抽象、概括发展了逻辑思维能力。

2、知识学习意义分析

通过自主探究的学习过程,了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言描述不同的具体问题,感受集合语言的意义和作用。

3、教学建议与学法指导

由于本节新概念、新符号较多,虽然内容较为浅显,但不应讲得过快,应在讲解概念的同时,让学生多阅读课本,互相交流,在此基础上理解概念并熟悉新符号的使用。通过问题探究、自主探索、合作交流、自我总结等形式,调动学生的积极性。

【学情分析】

在初中,学生学习过一些点的集合或轨迹,如:平面内到一个定点的距离等于定长的点的集合(圆);到一条线段的两个端点的距离相等的点的集合(线段的垂直平分线)。这对学生学习本节课的知识有一定的帮助,只不过现在我们要把这个“集合”推广,它不仅仅是点的集合或图形的集合,而是“指定的某些对象的全体”。集合语言是现代数学的基本语言,使用这种语言,不仅有助于简洁、准确地表达数学内容,还可以用来刻画和解决生活中的许多问题。学习集合,可以发展同学们用数学语言进行交流的能力。

【教学目标】

1、知识与技能

(1)学生通过自主学习,初步理解集合的概念,理解元素与集合间的关系,了解集合元素的确定性、互异性,无序性,知道常用数集及其记法;

(2)掌握集合的常用表示法——列举法和描述法。

2、过程与方法

通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言(如自然语言、图形语言、集合语言)描述不同的具体问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识。

3、情态与价值

在掌握基本概念的基础上,能够解决相关问题,获得数学学习的成就感,提高学生分析问题和解决问题的能力,培养学生的应用意识。

【重点难点】

1、教学重点:集合的基本概念与表示方法。

2、教学难点:选择合适的方法正确表示集合。

【教学思路】

通过实例以及学生熟悉的数集,引入集合的概念,进而给出集合的表示方法,学生通过自我体会、自主学习、自我总结达到掌握本节课内容的目的。教学过程按照“提出问题——学生讨论——归纳总结——获得新知——自我检测”环节安排。

【教学过程】

课前准备:

提前留给学生预习方案:a.预习初中数学中有关集合的章节;b.预习本节内容,试着找出与以往的联系;c.搜集生活中的集合的使用实例。

导入新课:同学们,我们今天要学习的是集合的知识,在小学和初中,我们已经接触过了一些集合,例如,自然数的集合,有理数的集合,不等式x-7<3的解得集合,到一个顶点的距离等于定长的点的集合(即圆),等等。现在呢,我要说的是:我们大家通过对初中知识的预习和对本节课的预习我相信你们能够很大一部分已经掌握了本节知识的主要问题,对不对?(同学们会高兴地说:对!)

下面我们分三个小组,做个游戏,好不好?我们互相竞赛答题,互相评论优点与不足,好不好?(同学们在被调动起情绪的时候应该说:好!)

教与学的过程:

预设问题设计意图师生活动教师活动

一组二组三组活动同学们,通过看课本2页的(1)至(8)个例子,同学们有什么启发吗?提出一个模糊一点的问题,留给三组学生更宽的思考空间。启发思考,激发兴趣。教师点拨,及时纠正偏差的回答方向。(理想答案:我们学过很多集合的知识了。我们会举出一些集合的例子。)

学生三个组分组轮流回答。你能说出他们有什么共同的特征吗?为集合的定义及含义的给出作出铺垫,并培养学生的总结概括能力。引导学生共同得出正确的结论。最后给出准确的定义:我们把研究的对象称为元素(element);把一些元素组成的总体叫做集合(set)(简称集)。学生讨论,分组轮流回答。你们能说出元素与集合是什么关系吗?怎么表示呀?用什么额符号表示啊?通过学生自己总结,对元素与集合的关系记忆更深刻。教师指导学生得出准确答案。(理想答案:集合是整体,元素是个体,集合有元素组成。集合用大写字母表示,例如A;元素用小写字母表示,例如a.如果a是集合A的元素,就说a属于A集合A,记做a∈A,如果a不是集合A中的元素,就说a不属于集合A,记做A)学生讨论,分组轮流回答。

可以互相挑出对方回答问题的错误来比赛。我们描述集合常用哪些方法呢?怎么表示?引导学生认识集合的两种常见表示方法。教师引导指正。(理想答案:列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法。描述法:用集合所含元素的共同特征表示集合的方法称为描述法。具体方法是:在花括号内线写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。同学们上黑板边回答边演练。谁能试着说说集合中的元素有什么特点啊?拓展知识,让学生对元素的特征有极爱哦理性的认识,并开发其探究思维。教师点拨。(理想答案:元素一旦给出是确定的,确定性,没有相同的,互异性,是没有顺序的,无序性。

即(1)确定性:对于任意一个元素,要么它属于某个指定集合,要么它不属于该集合,二者必居其一。

(2)互异性:同一个集合中的元素是互不相同的。

(3)无序性:任意改变集合中元素的排列次序,它们仍然表示同一个集合。)学生探究讨论,回答。什么叫两个集合相等呢?深刻理解集合。教师给出答案。(如果构成两个集合的元素是一样的,我们称这两个集合是相等的。)学生探讨回答。

关于高二数学教案 2

一、教材分析

本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。

根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

认知目标:通过创设问题情境,引导学生发现正弦定理的内容,掌握正弦定理的内容及其证明方法,使学生会运用正弦定理解决两类基本的解三角形问题。

能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,激发学生学习的兴趣。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。教学难点:已知两边和其中一边的对角解三角形时判断解的个数。

二、教法

根据教材的内容和编排的特�

三、学法

指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

四、教学过程

(一)创设情境(3分钟)

“兴趣是的。老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题,

(二)猜想—推理—证明(15分钟)

激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。提问:那结论对任意三角形都适用吗?(让学生分小组讨论,并得出猜想)

在三角形中,角与所对的边满足关系

注意:

1.强调将猜想转化为定理,需要严格的理论证明。

2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

(三)总结--应用(3分钟)

1.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

2.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

高二数学教案 3

教学目标

1.使学生理解圆的旋转不变性,理解圆心角、弦心距的概念;

2.使学生掌握圆心角、弧、弦、弦心距之间的相等关系定理及推论,并初步学会运用这些关系解决有关问题;

3.培养学生观察、分析、归纳的能力,向学生渗透旋转变换的思想及由特殊到一般的认识规律.

教学重点和难点

圆心角、弧、弦、弦心距之间的相等关系是重点;从圆的旋转不变性出发,推出圆心角、弧、弦、弦心距之间的相等关系是难点.

教学过程设计

一、创设情景,引入新课

圆是轴对称图形.圆的这一性质,帮助我们解决了圆的许多问题.今天我们再来一起研究一下圆还有哪些特性.

1.动态演示,发现规律

投影出示图7-47,并动态显示:平行四边形绕对角线交点O旋转180°后.问:

(1)结果怎样?

学生答:和原来的平行四边形重合.

(2)这样的图形叫做什么图形?

学生答:中心对称图形.

投影出示图7-48,并动态显示:⊙O绕圆心O旋转180°.由学生观察后,归纳出:圆是以圆心为对称中心的中心对称图形.

投影继续演示如图7-49,让直径AB两个端点A,B绕圆心旋转30°,45°,

90°,让学生观察发现什么结论?

得出:不论绕圆心旋转多少度,都能够和原来的图形重合.

进一步演示,让圆绕着圆心旋转任意角度α,你发现什么?

学生答:仍然与原来的图形重合.

于是由学生归纳总结,得出圆所特有的性质:圆的旋转不变性.即圆绕圆心旋转任意一个角度α,都能够与原来的图形重合.

2.圆心角,弦心距的概念.

我们在研究圆的旋转不变性时,⊙O绕圆心O旋转任意角度α后,出现一个角

∠AOB,请同学们观察一下,这个角有什么特点?如图7-50.(如有条件可电脑闪动显示图形.)

在学生观察的基础上,由学生说出这个角的特点:顶点在圆心上.

在此基础上,教师给出圆心角的定义,并板书.

顶点在圆心的角叫做圆心角.

再进一步观察,AB是∠AOB所对的弧,连结AB,弦AB既是圆心角∠AOB也是AB所对的弦.请同学们回忆,在学习垂径定理时,常作的一条辅助线是什么?

学生答:过圆心O作弦AB的垂线.

在学生回答的基础上,教师指出:点O到AB的垂直线段OM的长度,即圆心到弦的'距离叫做弦心距.如图7-51.(教师板书定义)最后指出:这节课我们就来研究圆心角之间,以及它们所对的弧、弦、弦的弦心距之间的关系.(引出课题)

二、大胆猜想,发现定理

在图7-52中,再画一圆心角∠A′OB′,如果∠AOB=∠A′OB′,(变化显示两角相等)再作出它们所对的弦AB,A′B′和弦的弦心距OM,OM′,请大家大胆猜想,其余三组量与,弦AB与A′B′,弦心距OM与OM′的大小关系如何?

学生很容易猜出:=,AB=A′B′,OM=OM′.

教师进一步提问:同学们刚才的发现仅仅是感性认识,猜想是否正确,必须进行证明,怎样证明呢?

学生最容易想到的是证全等的方法,但得不到=,怎样证明弧相等呢?

让学生思考并启发学生回忆等弧的定义是什么?

学生:在同圆或等圆中,能够完全重合的弧叫等弧.

请同学们想一想,你用什么方法让和重合呢?

学生:旋转.

下面我们就来尝试利用旋转变换的思想证明=.

把∠AOB连同旋转,使OA与OA′重合,电脑开始显示旋转过程.教师边演示边提问.

我们发现射线OB与射线OB′也会重合,为什么?

学生:因为∠AOB=∠A′OB′,

所以射线OB与射线OB′重合.

要证明与重合,关键在于点A与点A′,点B与点B′是否分别重合.这两对点分别重合吗?

学生:重合.

你能说明理由吗?

学生:因为OA=OA′,OB=OB′,

所以点A与点A′重合,点B与点B′重合.

当两段孤的两个端点重合后,我们可以得到哪些量重合呢?

学生:与重合,弦AB与A′B′重合,OM与OM′重合.

为什么OM也与OM′重合呢?

学生:根据垂线的唯一性.

于是有结论:=,AB=A′B′,OM=OM′.

以上证明运用了圆的旋转不变性.得到结论后,教师板书证明过程,并引导学生用简洁的文字叙述这个真命题.

教师板书定理.

定理:在同圆____中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.

教师引导学生补全定理内容.

投影显示如图7-53,⊙O与⊙O′为等圆,∠AOB=∠A′O′B′,OM与

O′M′分别为AB与A′B′的弦心距,请学生回答与.AB与A′B′,OM与O′M′还相等吗?为什么?

在学生回答的基础上,教师指出:以上三组量仍然相等,因为两个等圆可以叠合成同圆.(投影显示叠合过程)

这样通过叠合,把等圆转化成了同圆,教师把定理补充完整.

然后,请同学们思考定理的条件和结论分别是什么?并回答:

定理是在同圆或等圆这个大前提下,已知圆心角相等,得出其余三组量相等.请同学们思考,在这个大前提下,把圆心角相等与三个结论中的任何一个交换位置,可以得到三个新命题,这三个命题是真命题吗?如何证明?

在学生讨论的基础上,简单地说明证明方法.

最后,教师把这四个真命题概括起来,得到定理的推论.

请学生归纳,教师板书.

推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.

三、巩固应用、变式练习

例1判断题,下列说法正确吗?为什么?

(1)如图7-54:因为∠AOB=∠A′OB′,所以AB=.

(2)在⊙O和⊙O′中,如果弦AB=A′B′,那么=.

分析:(1)、(2)都是不对的.在图7-54中,因为和不在同圆或等圆中,不能用定理.对于(2)也缺少了等圆的条件.可让学生举反例说明.

例2如图7-55,点P在⊙O上,点O在∠EPF的角平分线上,∠EPF的两边交⊙O于点A和B.求证:PA=PB.

让学生先思考,再叙述思路,教师板书示范.

证明:作OM⊥PA,ON⊥PB,垂足为M,N.

把P点当做运动的点,将例2演变如下:

变式1(投影打出)

已知:如图7-56,点O在∠EPF的平分线上,⊙O和∠EPF的两边分别交于点A,B和C,D.

求证:AB=CD.

师生共同分析之后,由学生口述证明过程.

变式2(投影打出)

已知:如图7-57,⊙O的弦AB,CD相交于点P,∠APO=∠CPO,

求证:AB=CD.

由学生口述证题思路.

说明:这组例题均是利用弦心距相等来证明弦相等的问题,当然,也可利用其它方法来证,只不过前者较为简便.

练习1已知:如图7-58,AD=BC.

求证:AB=CD.

师生共同分析后,学生练习,一学生上黑板板演.

变式练习.已知:如图7-58,=,求证:AB=CD.

四、师生共同小结

教师提问:

(1)这节课学习了哪些具体内容?

(2)本节的定理和推论是用什么方法证明的?

(3)应注意哪些问题?

在学生回答的基础上,教师总结.

(1)这节课主要学习了两部分内容:一是证明了圆是中心对称图形.得到圆的特性圆的旋转不变性;二是学习了在同圆或等圆中,圆心角、圆心角所对的弧、所对的弦、所对的弦的弦心距之间的关系定理及推论.这些内容是我们今后证明弧相等、弦相等、角相等的重要依据.

(2)本节通过观察猜想论证的方法,从运动变化中发现规律,得出定理及推论,同时遵循由特殊到一般的思维认识规律,渗透了旋转变换的思想.

(3)在运用定理及推论解题时,必须注意要有“在同圆或等圆”这一前提条件.

五、布置作业

思考题:已知AB和CD是⊙O的两条弦,OM和ON分别是AB和CD的弦心距,如果AB>CD,那么OM和ON有什么关系?为什么?

板书设计

课堂教学设计说明

这份教案为1课时.

如果内容多,部分练习题可在下节课中处理.

摘自《初中几何教案》

高二数学优秀教案 4

教学目的:

1.掌握常用基本不等式,并能用之证明不等式和求最值;

2.掌握含绝对值的不等式的性质;

3.会解简单的高次不等式、分式不等式、含绝对值的不等式、简单的无理不等式、指数不等式和对数不等式。学会运用数形结合、分类讨论、等价转换的思想方法分析和解决有关

教学过程:

一、复习引入:本章知识点

二、讲解范例:几类常见的问题

(一) 含参数的不等式的解法

例1解关于x的不等式 .

例2解关于x的不等式 .

例3解关于x的不等式 .

例4解关于x的不等式

例5 满足 的x的集合为A;满足 的x

的集合为B 1 若AB 求a的取值范围 2 若AB 求a的取值范围 3 若AB为仅含一个元素的集合,求a的值。

(二)函数的最值与值域

例6 求函数 的最大值,下列解法是否正确?为什么?

解一: ,

解二: 当 即 时,

例7 若 ,求 的最值。

例8 已知x , y为正实数,且 成等差数列, 成等比数列,求 的取值范围。

例9 设 且 ,求 的最大值

例10 函数 的最大值为9,最小值为1,求a,b的值。

三、作业:

1.

2. , 若 ,求a的取值范围

3.

4.

5.当a在什么范围内方程: 有两个不同的负根

6.若方程 的两根都对于2,求实数m的范围

7.求下列函数的最值:

1

2

8.1 时求 的最小值, 的最小值

2设 ,求 的最大值

3若 , 求 的最大值

4若 且 ,求 的最小值

9.若 ,求证: 的最小值为3

10.制作一个容积为 的圆柱形容器(有底有盖),问圆柱底半径和

高各取多少时,用料最省?(不计加工时的损耗及接缝用料)

高二数学教案 5

一、教学目标设计

1. 了解利用科学计算免费软件--Scilab软件编写程序来实现算法的基本过程。

2. 了解并掌握Scilab中的基本语句,如赋值语句、输入输出语句、条件语句、循环语句;能在Scipad窗口中编辑完整的程序,并运行程序。

3. 通过上机操作和调试,体验从算法设计到实施的过程。

二、教学重点及难点

重点: 体会算法的实现过程,能认识到一个算法可以用很多的语言来实现,Scilab只是其中之一。

难点:体会编程是一个细致严谨的过程,体会正确完成一个算法并实施所要经历的过程。

三、教学流程设计

四、教学过程设计

(一)几个基本语句和结构

1、赋值语句(=)

2、输入语句 输入变量名=input(提示语)

3、输出语句 print() disp()

4、条件语句

5、循环语句

(二)几个程序设计

建议:直接在Scilab窗口下编写完整的程序,保存后再运行;如果不能运行或出现逻辑错误

可打开程序后直接修改,修改后再保存运行,反复调试,直到测试成功。

高二数学教案 6

三维目标

(1)知识与技能:

掌握归纳推理的技巧,并能运用解决实际问题。

(2)过程与方法:

通过“自主、合作与探究”实现“一切以学生为中心”的理念。

(3)情感、态度与价值观:

感受数学的人文价值,提高学生的学习兴趣,使其体会到数学学习的美感。

教学重点

归纳推理及方法的总结。

教学难点

归纳推理的含义及其具体应用。

教具准备

与教材内容相关的资料。

课时安排

1课时

教学过程

一。问题情境

(1)原理初探

①引入:“阿基米德曾对国王说,给我一个支点,我将撬起整个地球!”

②提问:大家认为可能吗?他为何敢夸下如此海口?理由何在?

③探究:他是怎么发现“杠杆原理”的?

从而引入两则小典故:

A:一个小孩,为何轻轻松松就能提起一大桶水?

B:修筑河堤时,奴隶们是怎样搬运巨石的?

高二数学优秀教案 7

【教材分析】

1、知识内容与结构分析

集合论是现代数学的一个重要的基础。在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础,集合论以及它所反映的数学思想在越来越广泛的领域中得到应用。课本从学生熟悉的集合(自然数集合、有理数的集合等)出发,结合实例给出了元素、集合的含义,学生通过对具体实例的抽象、概括发展了逻辑思维能力。

2、知识学习意义分析

通过自主探究的学习过程,了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言描述不同的具体问题,感受集合语言的意义和作用。

3、教学建议与学法指导

由于本节新概念、新符号较多,虽然内容较为浅显,但不应讲得过快,应在讲解概念的同时,让学生多阅读课本,互相交流,在此基础上理解概念并熟悉新符号的使用。通过问题探究、自主探索、合作交流、自我总结等形式,调动学生的积极性。

【学情分析】

在初中,学生学习过一些点的集合或轨迹,如:平面内到一个定点的距离等于定长的点的集合(圆);到一条线段的两个端点的距离相等的点的集合(线段的垂直平分线)。这对学生学习本节课的知识有一定的帮助,只不过现在我们要把这个“集合”推广,它不仅仅是点的集合或图形的集合,而是“指定的某些对象的全体”。集合语言是现代数学的基本语言,使用这种语言,不仅有助于简洁、准确地表达数学内容,还可以用来刻画和解决生活中的许多问题。学习集合,可以发展同学们用数学语言进行交流的能力。

【教学目标】

1、知识与技能

(1)学生通过自主学习,初步理解集合的概念,理解元素与集合间的关系,了解集合元素的确定性、互异性,无序性,知道常用数集及其记法;

(2)掌握集合的常用表示法——列举法和描述法。

2、过程与方法

通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言(如自然语言、图形语言、集合语言)描述不同的具体问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识。

3、情态与价值

在掌握基本概念的基础上,能够解决相关问题,获得数学学习的成就感,提高学生分析问题和解决问题的能力,培养学生的应用意识。

【重点难点】

1、教学重点:集合的基本概念与表示方法。

2、教学难点:选择合适的方法正确表示集合。

【教学思路】

通过实例以及学生熟悉的数集,引入集合的概念,进而给出集合的表示方法,学生通过自我体会、自主学习、自我总结达到掌握本节课内容的目的。教学过程按照“提出问题——学生讨论——归纳总结——获得新知——自我检测”环节安排。

【教学过程】

课前准备:

提前留给学生预习方案:a.预习初中数学中有关集合的章节;b.预习本节内容,试着找出与以往的联系;c.搜集生活中的集合的使用实例。

导入新课:同学们,我们今天要学习的是集合的知识,在小学和初中,我们已经接触过了一些集合,例如,自然数的集合,有理数的集合,不等式x-7<3的解得集合,到一个顶点的距离等于定长的点的集合(即圆),等等。现在呢,我要说的是:我们大家通过对初中知识的预习和对本节课的预习我相信你们能够很大一部分已经掌握了本节知识的主要问题,对不对?(同学们会高兴地说:对!)

下面我们分三个小组,做个游戏,好不好?我们互相竞赛答题,互相评论优点与不足,好不好?(同学们在被调动起情绪的时候应该说:好!)

教与学的过程:

预设问题设计意图师生活动教师活动

一组二组三组活动同学们,通过看课本2页的(1)至(8)个例子,同学们有什么启发吗?提出一个模糊一点的问题,留给三组学生更宽的思考空间。启发思考,激发兴趣。教师点拨,及时纠正偏差的回答方向。(理想答案:我们学过很多集合的知识了。我们会举出一些集合的例子。)

学生三个组分组轮流回答。你能说出他们有什么共同的特征吗?为集合的定义及含义的给出作出铺垫,并培养学生的总结概括能力。引导学生共同得出正确的结论。最后给出准确的定义:我们把研究的对象称为元素(element);把一些元素组成的总体叫做集合(set)(简称集)。学生讨论,分组轮流回答。你们能说出元素与集合是什么关系吗?怎么表示呀?用什么额符号表示啊?通过学生自己总结,对元素与集合的关系记忆更深刻。教师指导学生得出准确答案。(理想答案:集合是整体,元素是个体,集合有元素组成。集合用大写字母表示,例如A;元素用小写字母表示,例如a.如果a是集合A的元素,就说a属于A集合A,记做a∈A,如果a不是集合A中的元素,就说a不属于集合A,记做A)学生讨论,分组轮流回答。

可以互相挑出对方回答问题的错误来比赛。我们描述集合常用哪些方法呢?怎么表示?引导学生认识集合的两种常见表示方法。教师引导指正。(理想答案:列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法。描述法:用集合所含元素的共同特征表示集合的方法称为描述法。具体方法是:在花括号内线写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。同学们上黑板边回答边演练。谁能试着说说集合中的元素有什么特点啊?拓展知识,让学生对元素的特征有极爱哦理性的认识,并开发其探究思维。教师点拨。(理想答案:元素一旦给出是确定的,确定性,没有相同的,互异性,是没有顺序的,无序性。

即(1)确定性:对于任意一个元素,要么它属于某个指定集合,要么它不属于该集合,二者必居其一。

(2)互异性:同一个集合中的元素是互不相同的。

(3)无序性:任意改变集合中元素的排列次序,它们仍然表示同一个集合。)学生探究讨论,回答。什么叫两个集合相等呢?深刻理解集合。教师给出答案。(如果构成两个集合的元素是一样的,我们称这两个集合是相等的。)学生探讨回答。

高二数学教案 8

一、教学内容分析

圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象、恰当地利用xx解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

二、学生学习情况分析

我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

三、设计思想

由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情、在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率、

四、教学目标

1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用xx解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

3、借助多媒体辅助教学,激发学习数学的兴趣、

五、教学重点与难点:

教学重点

1、对圆锥曲线定义的理解

2、利用圆锥曲线的定义求“最值”

3、“定义法”求轨迹方程

教学难点:

巧用圆锥曲线xx解题

六、教学过程设计

【设计思路】

开门见山,提出问题

例题:

(1)已知a(-2,0),b(2,0)动点m满足|ma|+|mb|=2,则点m的轨迹是()。

(a)椭圆(b)双曲线(c)线段(d)不存在

(2)已知动点m(x,y)满足(x1)2(y2)2|3x4y|,则点m的轨迹是()。

(a)椭圆(b)双曲线(c)抛物线(d)两条相交直线

【设计意图】

定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

【学情预设】

估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折——如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。

高二数学优秀教案5 9

高中数学菱形教案

一、教学目标

1、把握菱形的判定。

2、通过运用菱形知识解决具体问题,提高分析能力和观察能力。

3、通过教具的演示培养学生的学习爱好。

4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想。

二、教法设计

观察分析讨论相结合的方法

三、重点·难点·疑点及解决办法

1、教学重点:菱形的判定方法。

2、教学难点:菱形判定方法的综合应用。

四、课时安排

1课时

五、教具学具预备

教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具

六、师生互动活动设计

教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨

七、教学步骤

复习提问

1、叙述菱形的定义与性质。

2、菱形两邻角的比为1:2,较长对角线为 ,则对角线交点到一边距离为________.

引入新课

师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?

生答:定义法。

此外还有别的两种判定方法,下面就来学习这两种方法。

讲解新课

菱形判定定理1:四边都相等的四边形是菱形。

菱形判定定理2:对角钱互相垂直的'平行四边形是菱形。图1

分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形。

分析判定2:

师问:本定理有几个条件?

生答:两个。

师问:哪两个?

生答:(1)是平行四边形(2)两条对角线互相垂直。

师问:再需要什么条件可证该平行四边形是菱形?

生答:再证两邻边相等。

(由学生口述证实)

证实时让学生注重线段垂直平分线在这里的应用,

师问:对角线互相垂直的四边形是菱形吗?为什么?

可画出图,显然对角线 ,但都不是菱形。

菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):

注重:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件。

例4 已知: 的对角钱 的垂直平分线与边 、 分别交于 、 ,如图。

求证:四边形 是菱形(按教材讲解)。

总结、扩展

1、小结:

(1)归纳判定菱形的四种常用方法。

(2)说明矩形、菱形之间的区别与联系。

2、思考题:已知:如图4△ 中, , 平分 , , , 交 于 。

求证:四边形 为菱形。

八、布置作业

教材P159中9、10、11、13(2)

九、板书设计

十、随堂练习

教材P153中1、2、3

高二数学教案 10

第06课时

2、2、3 直线的参数方程

学习目标

1.了解直线参数方程的条件及参数的意义;

2. 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

学习过程

一、学前准备

复习:

1、若由 共线,则存在实数 ,使得 ,

2、设 为 方向上的 ,则 =︱ ︱ ;

3、经过点 ,倾斜角为 的直线的普通方程为 。

二、新课导学

探究新知(预习教材P35~P39,找出疑惑之处)

1、选择怎样的参数,才能使直线上任一点M的坐标 与点 的坐标 和倾斜角 联系起来呢?由于倾斜角可以与方向联系, 与 可以用距离或线段 数量的大小联系,这种方向有向线段数量大小启发我们想到利用向量工具建立直线的参数方程。

如图,在直线上任取一点 ,则 = ,

而直线

的单位方向

向量

=( , )

因为 ,所以存在实数 ,使得 = ,即有 ,因此,经过点

,倾斜角为 的直线的参数方程为:

2.方程中参数的几何意义是什么?

应用示例

例1.已知直线 与抛物线 交于A、B两点,求线段AB的长和点 到A ,B两点的距离之积。(教材P36例1)

解:

例2.经过点 作直线 ,交椭圆 于 两点,如果点 恰好为线段 的中点,求直线 的方程。(教材P37例2)

解:

反馈练习

1.直线 上两点A ,B对应的参数值为 ,则 =( )

A、0 B、

C、4 D、2

2.设直线 经过点 ,倾斜角为 ,

(1)求直线 的参数方程;

(2)求直线 和直线 的交点到点 的距离;

(3)求直线 和圆 的两个交点到点 的距离的和与积。

三、总结提升

本节小结

1.本节学习了哪些内容?

答:1.了解直线参数方程的条件及参数的意义;

2. 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

学习评价

一、自我评价

你完成本节导学案的情况为( )

A.很好 B.较好 C. 一般 D.较差

课后作业

1. 已知过点 ,斜率为 的直线和抛物线 相交于 两点,设线段 的中点为 ,求点 的坐标。

2.经过点 作直线交双曲线 于 两点,如果点 为线段 的中点,求直线 的方程

3.过抛物线 的焦点作倾斜角为 的弦AB,求弦AB的长及弦的中点M到焦点F的距离。

数学高二教案 11

教学 目标:

(1)掌握圆的一般方程及其特点.

(2)能将圆的一般方程转化为圆的标准方程,从而求出圆心和半径.

(3)能用待定系数法,由已知条件求出圆的一般方程.

(4)通过本节课学习,进一步掌握配方法和待定系数法.

教学 重点:

(1)用配方法,把圆的一般方程转化成标准方程,求出圆心和半径.

(2)用待定系数法求圆的方程.

教学 难点:

圆的一般方程特点的研究.

教学 用具:

计算机.

教学 方法:

启发引导法,讨论法.

教学过程

【引入】

前边已经学过了圆的标准方程

把它展开得

任何圆的方程都可以通过展开化成形如

的方程

【问题1】

形如①的方程的曲线是否都是圆?

师生共同讨论分析:

如果①表示圆,那么它一定是某个圆的标准方程展开整理得到的.我们把它再写成原来的形式不就可以看出来了吗?运用配方法,得

显然②是不是圆方程与 是什么样的数密切相关,具体如下:

(1)当 时,②表示以 为圆心、以 为半径的圆;

(2)当 时,②表示一个点 ;

(3)当 时,②不表示任何曲线.

总结:任意形如①的方程可能表示一个圆,也可能表示一个点,还有可能什么也不表示.

圆的一般方程的定义:

当 时,①表示以 为圆心、以 为半径的圆,

此时①称作圆的一般方程.

即称形如 的方程为圆的一般方程.

【问题2】圆的一般方程的特点,与圆的标准方程的异同.

(1) 和 的系数相同,都不为0.

(2)没有形如 的二次项.

圆的一般方程与一般的二元二次方程

相比较,上述(1)、(2)两个条件仅是③表示圆的必要条件,而不是充分条件或充要条件.

圆的一般方程与圆的标准方程各有千秋:

(1)圆的标准方程带有明显的几何的影子,圆心和半径一目了然.

(2)圆的一般方程表现出明显的代数的形式与结构,更适合方程理论的运用.

【实例分析】

例1:下列方程各表示什么图形.

(1) ;

(2) ;

(3) .

学生演算并回答

(1)表示点(0,0);

(2)配方得 ,表示以 为圆心,3为半径的圆;

(3)配方得 ,当 、 同时为0时,表示原点(0,0);当 、 不同时为0时,表示以 为圆心, 为半径的圆.

例2:求过三点 , , 的圆的方程,并求出圆心坐标和半径.

分析:由于学习了圆的标准方程和圆的一般方程,那么本题既可以用标准方程求解,也可以用一般方程求解.

解:设圆的方程为

因为 、 、 三点在圆上,则有

解得: , ,

所求圆的方程为

可化为

圆心为 ,半径为5.

请同学们再用标准方程求解,比较两种解法的区别.

【概括总结】通过学生讨论,师生共同总结:

(1)求圆的方程多用待定系数法.其步骤为:由题意设方程(标准方程或一般方程);根据条件列出关于待定系数的方程组;解方程组求出系数,写出方程.

(2)如何选用圆的标准方程和圆的一般方程.一般地,易求圆心和半径时,选用标准方程;如果给出圆上已知点,可选用一般方程.

下面再看一个问题:

例3: 经过点 作圆 的割线,交圆 于 、 两点,求线段 的中点 的轨迹.

解:圆 的方程可化为 ,其圆心为 ,半径为2.设 是轨迹上任意一点.

化简得

点 在曲线上,并且曲线为圆 内部的一段圆弧.

【练习巩固】

(1)方程 表示的曲线是以 为圆心,4为半径的圆.求 、 、 的值.(结果为4,-6,-3)

(2)求经过三点 、 、 的圆的方程.

分析:用圆的一般方程,代入点的坐标,解方程组得圆的方程为 .

(3)课本第79页练习1,2.

【小结】师生共同总结:

(1)圆的一般方程及其特点.

(2)用配方法化圆的一般方程为圆的标准方程,求圆心坐标和半径.

(3)用待定系数法求圆的方程.

【作业】课本第82页5,6,7,8.

板书设计】

圆的一般方程

圆的一般方程

例1:

例2:

例3:

练习:

小结:

作业:

关于高二数学教案 12

【教学目标】

1、会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

2、能根据几何结构特征对空间物体进行分类。

3、提高学生的观察能力;培养学生的空间想象能力和抽象括能力。

【教学重难点】

教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

教学难点:柱、锥、台、球的结构特征的概括。

【教学过程】

1、情景导入

教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。

2、展示目标、检查预习

3、合作探究、交流展示

(1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?

(2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。

在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;

(2)其余各面都是平行四边形;

(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

(3)提出问题:请列举身边的棱柱并对它们进行分类

(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

(5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。

(6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

(7)教师指出圆柱和棱柱�

4、质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)

(2)棱柱的任何两个平面都可

2、使学生会用描点法画出简单函数的图象。

二、教学重点、难点

重点:

1、理解与认识函数图象的意义。

2、培养学生的看图、识图能力。

难点:在画图的三个步骤的列表中,如何恰当地选取自变量与函数的对应值问题。

三、教学过程

复习提问

1、函数有哪三种表示法?(答:解析法、列表法、图象法。)

2、结合函数y=x的图象,说明什么是函数的图象?

3、说出下列各点所在象限或坐标轴:

新课

1、画函数图象的方法是描点法。其步骤:

(1)列表。要注意适当选取自变量与函数的对应值。什么叫“适当”?这就要求能选取表现函数图象特征的几个关键点。比如画函数y=3x的图象,其关键点是原点(0,0),只要再选取另一个点如M(3,9)就可以了。

一般地,我们把自变量与函数的对应值分别作为点的横坐标和纵坐标,这就要把自变量与函数的对应值列出表来。

(2)描点。我们把表中给出的有序实数对,看作点的'坐标,在直角坐标系中描出相应的点。

(3)用光滑曲线连线。根据函数解析式比如y=3x,我们把所描的两个点(0,0),(3,9)连成直线。

一般地,根据函数解析式,我们列表、描点是有限的几个,只需在平面直角坐标系中,把这有限的几个点连成表示函数的曲线(或直线)。

2、讲解画函数图象的三个步骤和例。画出函数y=x+0。5的图象。

小结

本节课的重点是让学生根据函数解析式画函数图象的三个步骤,自己动手画图。

练习

①选用课本练习

(前一节已作:列表、描点,本节要求连线)

②补充题:画出函数y=5x-2的图象。

作业:选用课本习题。

四、教学注意问题

1、注意渗透数形结合思想。通过研究函数的图象,对图象所表示的一个变量随另一个变量的变化而变化就更有形象而直观的认识。把函数的解析式、列表、图象三者结合起来,更有利于认识函数的本质特征。

2、注意充分调动学生自己动手画图的积极性。

3、认识到由于计算器和计算机的普及化,代替了手工绘图功能。故在教学中要倾向培养学生看图、识图的能力。

高二数学优秀教案 13

一、教学目标:

掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

二、教学重点:

向量的性质及相关知识的综合应用。

三、教学过程:

(一)主要知识:

1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

(二)例题分析:

四、小结:

1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,

2、渗透数学建模的思想,切实培养分析和解决问题的能力。

高二数学教案 14

一、教材分析

【教材地位及作用】

基本不等式又称为均值不等式,选自北京师范大学出版社普通高中课程标准实验教科书数学必修5第3章第3节内容。教学对象为高二学生,本节课为第一课时,重在研究基本不等式的证明及几何意义。本节课是在系统的学习了不等关系和掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续进一步了解不等式的性质及运用,研究最值问题奠定基础。因此基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。

【教学目标】

依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:

知识与技能目标:理解掌握基本不等式,理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;

过程与方法目标:通过探究基本不等式,使学生体会知识的形成过程,培养分析、解决问题的能力;

情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

【教学重难点】

重点:理解掌握基本不等式,能借助几何图形说明基本不等式的意义。

难点:利用基本不等式推导不等式。

关键是对基本不等式的理解掌握。

二、教法分析

本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。利用多媒体辅助教学,直观地反映了教学内容,使学生思维活动得以充分展开,从而优化了教学过程,大大提高了课堂教学效率。

三、学法指导

新课改的精神在于以学生的发展为本,把学习的主动权还给学生,倡导积极主动,勇于探索的学习方法,因此,本课主要采取以自主探索与合作交流的学习方式,通过让学生想一想,做一做,用一用,建构起自己的知识,使学生成为学习的主人。

四、教学过程

教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。

具体过程安排如下:

(一)基本不等式的教学设计创设情景,提出问题

设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实。基于此,设置如下情境:

上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。

[问题1]请观察会标图形,图中有哪些特殊的几何图形?它们在面积上有哪些相等关系和不等关系?(让学生分组讨论)

(二)探究问题,抽象归纳

基本不等式的教学设计1.探究图形中的不等关系

形的角度----(利用多媒体展示会标图形的变化,引导学生发现四个直角三角形的面积之和小于或等于正方形的面积。)

数的角度

[问题2]若设直角三角形的两直角边分别为a、b,应怎样表示这种不等关系?

学生讨论结果:。

[问题3]大家看,这个图形里还真有点奥妙。我们从图中找到了一个不等式。这里a、b的取值有没有什么限制条件?不等式中的等号什么时候成立呢?(师生共同探索)

咱们再看一看图形的变化,(教师演示)

(学生发现)当a=b四个直角三角形都变成了等腰直角三角形,他们的面积和恰好等于正方形的面积,即。探索结论:我们得到不等式,当且仅当时等号成立。

设计意图:本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式基本不等式的教学设计。在此基础上,引导学生认识基本不等式。

2、抽象归纳:

一般地,对于任意实数a,b,有,当且仅当a=b时,等号成立。

[问题4]你能给出它的证明吗?

学生在黑板上板书。

[问题5]特别地,当时,在不等式中,以、分别代替a、b,得到什么?

学生归纳得出。

设计意图:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础。

【归纳总结】

如果a,b都是非负数,那么,当且仅当a=b时,等号成立。

我们称此不等式为基本不等式。其中称为a,b的算术平均数,称为a,b的几何平均数。

3、探究基本不等式证明方法:

[问题6]如何证明基本不等式?

设计意图:在于引领学生从感性认识基本不等式到理性证明,实现从感性认识到理性认识的升华,前面是从几何图形中的面积关系获得不等式的,下面用代数的思想,利用不等式的性质直接推导这个不等式。

方法一:作差比较或由基本不等式的教学设计展开证明。

方法二:分析法

要证

只要证2

要证,只要证2

要证,只要证

显然,是成立的。当且仅当a=b时,中的等号成立。

4、理解升华

1)文字语言叙述:

两个正数的算术平均数不小于它们的几何平均数。

2)符号语言叙述:

若,则有,当且仅当a=b时,。

[问题7]怎样理解“当且仅当”?(学生小组讨论,交流看法,师生总结)

“当且仅当a=b时,等号成立”的含义是:

当a=b时,取等号,即;

仅当a=b时,取等号,即。

3)探究基本不等式的几何意义:

基本不等式的教学设计借助初中阶段学生熟知的几何图形,引导学生探究不等式的几何解释,通过数形结合,赋予不等式几何直观。进一步领悟不等式中等号成立的条件。

如图:AB是圆的直径,点C是AB上一点,

CD⊥AB,AC=a,CB=b,

[问题8]你能利用这个图形得出基本不等式的几何解释吗?

(教师演示,学生直观感觉)

易证RtACDRtDCB,那么CD2=CA·CB

即CD=。

这个圆的半径为,显然,它大于或等于CD,即,其中当且仅当点C与圆心重合,即a=b时,等号成立。

因此:基本不等式几何意义可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高。

4)联想数列的知识理解基本不等式

从形的角度来看,基本不等式具有特定的几何意义;从数的角度来看,基本不等式揭示了“和”与“积”这两种结构间的不等关系。

[问题9]回忆一下你所学的知识中,有哪些地方出现过“和”与“积”的结构?

归纳得出:

均值不等式的代数解释为:两个正数的等差中项不小它们的等比中项。

基本不等式的教学设计(四)体会新知,迁移应用

例1:(1)设均为正数,证明不等式:基本不等式的教学设计

(2)如图:AB是圆的直径,点C是AB上一点,设AC=a,CB=b,

,过作交于,你能利用这个图形得出这个不等式的一种几何解释吗?

设计意图:以上例题是根据基本不等式的使用条件中的难点和关键处设置的,目的是利用学生原有的平面几何知识,进一步领悟到不等式成立的条件,及当且仅当时,等号成立。这里完全放手让学生自主探究,老师指导,师生归纳总结。

(五)演练反馈,巩固深化

公式应用之一:

1、试判断与与2的大小关系?

问题:如果将条件“x>0”去掉,上述结论是否仍然成立?

2、试判断与7的大小关系?

公式应用之二:

设计意图:新颖有趣、简单易懂、贴近生活的问题,不仅极大地增强学生的兴趣,拓宽学生的视野,更重要的是调动学生探究钻研的兴趣,引导学生加强对生活的关注,让学生体会:数学就在我们身边的生活中

(1)用一个两臂长短有差异的天平称一样物品,有人说只要左右各秤一次,将两次所称重量相加后除以2就可以了。你觉得这种做法比实际重量轻了还是重了?

(2)甲、乙两商场对单价相同的同类产品进行促销。甲商场采取的促销方式是在原价p折的基础上再打q折;乙商场的促销方式则是两次都打折。对顾客而言,哪种打折方式更合算?(0≠q)

(五)反思总结,整合新知:

通过本节课的学习你有什么收获?取得了哪些经验教训?还有哪些问题需要请教?

设计意图:通过反思、归纳,培养概括能力;帮助学生总结经验教训,巩固知识技能,提高认知水平。从各种角度对均值不等式进行总结,目的是为了让学生掌握本节课的重点,突破难点

老师根据情况完善如下:

知识要点:

(1)重要不等式和基本不等式的条件及结构特征

(2)基本不等式在几何、代数及实际应用三方面的意义

思想方法技巧:

(1)数形结合思想、“整体与局部”

(2)归纳与类比思想

(3)换元法、比较法、分析法

(七)布置作业,更上一层

1、阅读作业:预习基本不等式的教学设计

2、书面作业:已知a,b为正数,证明不等式基本不等式的教学设计

3、思考题:类比基本不等式,当a,b,c均为正数,猜想会有怎样的不等式?

设计意图:作业分为三种形式,体现作业的巩固性和发展性原则,同时考虑学生的差异性。阅读作业是后续课堂的铺垫,而思考题不做统一要求,供学有余力的学生课后研究。

五、评价分析

1、在建立新知的过程中,教师力求引导、启发,让学生逐步应用所学的知识来分析问题、解决问题,以形成比较系统和完整的知识结构。每个问题在设计时,充分考虑了学生的具体情况,力争提问准确到位,便于学生思考和回答。使思考和提问持续在学生的最近发展区内,学生的思考有价值,对知识的理解和掌握在不断的思考和讨论中完善和加深。

2、本节的教学中要求学生对基本不等式在数与形两个方面都有比较充分的认识,特别强调数与形的统一,教学过程从形得到数,又从数回到形,意图使学生在比较中对基本不等式得以深刻理解。“数形结合”作为一种重要的数学思想方法,不是教师提一提学生就能够掌握并且会用的,只有学生通过实践,意识到它的好处之后,学生才会在解决问题时去尝试使用,只有通过不断的使用才能促进学生对这种思想方法的再理解,从而达到掌握它的目的。

高二数学教案 15

教学目标

1.掌握平面向量的数量积及其几何意义;

2.掌握平面向量数量积的重要性质及运算律;

3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;

4.掌握向量垂直的条件。

教学重难点

教学重点:平面向量的数量积定义

教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

教学工具

投影仪

教学过程

复习引入:

向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ

课堂小结

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

课后作业

P107习题2.4A组2、7题

课后小结

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

高二数学教案 16

一、教学目标

1.知识与技能

(1)理解流程图的顺序结构和选择结构。

(2)能用文字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图

2.过程与方法

学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。

3情感、态度与价值观

学生通过动手作图,.用自然语言表示算法,用图表示算法。进一步体会算法的基本思想程序化思想,在归纳概括中培养学生的逻辑思维能力。

二、教学重点、难点

重点:算法的顺序结构与选择结构。

难点:用含有选择结构的流程图表示算法。

三、学法与教学用具

学法:学生通过动手作图,.用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。

教学用具:尺规作图工具,多媒体。

四、教学思路

(一)、问题引入 揭示课题

例1 尺规作图,确定线段的一个5等分点。

要求:同桌一人作图,一人写算法,并请学生说出答案。

提问:用文字语言写出算法有何感受?

引导学生体验到:显得冗长,不方便、不简洁。

教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。

本节要学习的是顺序结构与选择结构。

右图即是同流程图表示的算法。

(二)、观察类比 理解课题

1、 投影介绍流程图的符号、名称及功能说明。

符号 符号名称 功能说明终端框 算法开始与结束处理框 算法的各种处理操作判断框 算法的各种转移

输入输出框 输入输出操作指向线 指向另一操作

2、讲授顺序结构及选择结构的概念及流程图

(1)顺序结构

依照步骤依次执行的一个算法

流程图:

(2)选择结构

对条件进行判断来决定后面的步骤的结构

流程图:

3.用自然语言表示算法与用流程图表示算法的比较

(1)半径为r的圆的面积公式 当r=10时写出计算圆的面积的算法,并画出流程图。

解:

算法(自然语言)

①把10赋与r

②用公式 求s

③输出s

流程图

(2) 已知函数 对于每输入一个X值都得到相应的函数值,写出算法并画流程图。

算法:(语言表示)

① 输入X值

②判断X的范围,若 ,用函数Y=x+1求函数值;否则用Y=2-x求函数值

③输出Y的值

流程图

小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。

学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)

(三)模仿操作 经历课题

1.用流程图表示确定线段A.B的一个16等分点

2.分析讲解例2;

分析:

思考:有多少个选择结构?相应的流程图应如何表示?

流程图:

(四)归纳小结 巩固课题

1.顺序结构和选择结构的模式是怎样的?

2.怎样用流程图表示算法。

二年级数学优秀教案【18篇】

(六)作业P99 1

高二数学教案 17

教学目标:

通过生动有趣的“数学乐园”活动,使学生加深对10以内数的认识,进一步巩固10以内的加减法,充分感受数学与日常生活的密切联系。使学生在理解和掌握知识的同时,感受到学习数学的乐趣,提高学习数学的兴趣。教学准备:

1.数字迷宫图十幅,信箱四个,口算卡片40张

2.自制教学课件,教室场景布置,学生坐成4行。

教学过程:

一、导入:小朋友们,今天老师带大家到“数学乐园”去玩(老师指“数学乐园”场景布置)。大家想不想去呀可是在“数学乐园”的门口有四个信箱,需要每个小朋友当一回“小小邮递员”,把“数字娃娃”藏在你们抽屉里的“信”送到正确的信箱里,就能进人数学乐园,大家有没有信心

二、活动送信游戏

1.分组送信。教室讲台上放四个标有数字的信箱,老师问:怎样才能把“信”送到正确的信箱里呢只要把“信”(即口算卡片)上的题目得数算出来,得数是几,就把“信”送到标有这个数的信箱里。每个学生从抽屉里拿出一封“信”(即口算卡片),在音乐声中分组走上讲台送“信”。注意:有的卡片上面的得数不是信箱的标号,是没法送出的信。对于没有送出的信,让学生说说为什么送不出去。

2.检查送信游戏的正确性。学生投完信后,老师把四个信箱分发到四个小组(课前学生坐成四行),由小组长主持检查每个信箱里的口算卡片是否送对了,学生做手势表示对错进行检查,看有没有送错的信。对于送错的信,让学生说说为什么送错了。各组检查完后,小组长向老师汇报检查结果。

三、活动二起立游戏

好啊,我们进人数学乐园啦!看,数学乐园里有很多小动物在等着我们呢!老师出示包括乖乖虎、皮卡丘、机器猫的画面(课件),你们喜欢它们吗让学生分组选择喜欢的小动物。全班坐成四行,每行10人,各行报数(同时进行)。

老师根据学生的选择点击小动物图案,出示下列四题:

1.请这一组的前面四个小朋友站起来。请第四个小朋友拍四下手。从前往后数你是第几个从后往前数你是第几个

2.请从前往后数第五个小朋友站起来,:你前面有几个小朋友后面有几个小朋友你这一组有几个小朋友你是怎么知道的

3.请从前往后数第六个小朋友站起来。不许往后看,你知道你后面有几个小朋友吗你是怎么知道的

4.请从后往前数第二个小朋友站起来。你这一组有几个男孩有几个女孩合起来一共有几个小朋友你是怎么知道的

四、活动三数字迷宫

前后左右四人为一个小组,每组发“数字迷宫”图一幅。说明:“数字迷宫”有一个人口,两个出口,由数字1-9组成,从人口到出口必须按1、2、3、……9的顺序走。四个小朋友讨论不同的路线,用不同颜色的水彩笔画出路线图,比一比看哪组想的路线最多画完后,分组统计出本组所画路线的条数,用水彩笔写在图的右下角,然后与别组交换统计路线的条数。

老师把每组的迷宫图贴在黑板上进行评比,小黑板上出示条形统计图的网格.每组组长上台,根据本组画的条数的多少,用小正方形贴出直条。

全班看图讨论下列问题:看___组想出的路线最多,第一名是二___组,画了___种方法;第二名是___组,画了___种方法;第三名是___组,画了___种方法;一组和___组画的同样多;___组比___组多画___条;___组比___组少画___条;

五、总结:

今天,大家在“数学乐园”里玩得开不开心在我们玩的游戏中运用了前面所学的10以内数的认识和加减法的知识。以后我们学会了更多的知识,老师再带大家到“数学乐园”里来玩。

评析:

在这篇教学设计中我们看到新课程理念的存在,并感受到它的冲击力。新课程不再过分注重知识的传授,学生获得知识与技能的过程同时成为学会学习和形成正确价值观的过程。不再过分强调学科本位,不再偏重书本知识,加强了课程内容与学生生活以及现代社会发展的联系,关注学生的学习兴趣和经验,注重学生终身学习必备的基础知识和技能,同时更为关注学生在情感、态度、价值观和一般能力等全面发展。倡导学生主动参与,乐于探究,勤于动手,培养学生搜集和处理信息的能力,分析和解决问题的能力,以及交流、合作的能力。

数学活动课是集知识性、趣味性和娱乐性于一体的课程,它重在学生参与,重在学生实践,旨在巩固知识、运用知识。在这里,数学得到了升华。数学的教育功能得到充分的体现。课程标准指出:“随着社会的发展,‘终身学习’和‘持续、和谐发展’等教育理念进一步得到人们的认同,数学教育观面临着重大变革,作为教育内容的数学,有着自身的特点与规律,它的基本出发点是促进学生的发展。因此,义务教育阶段数学课程不仅要考虑数学自身的特点,而且更应当遵循学生学习数学的心理规律,关注每一个学生在情感态度,思维能力,自我意识等多方面的进步和发展。”我想,这篇教学设计,对课程标准中的基本理念作了最好的解读。课堂教学从课内延伸到课外,从只注重学生知识结构的培养和认知图式的建构,到关注学生的具体生活和直接经验,并真正地深入学生的精神世界,从而使教学活动的基础性,发展性和创造性达到了统一,体现了“学习不是为了‘占有’别人的知识,而是为了‘生长’自己的知识”这种现代教育观。由此我们也看到了新课程强大的生命力,它正在促进学生有意义的学习方式和转变教师的教学行为。促进学生和教师共同成长。

我所执教的这节一年级《数学乐园》活动课除体现了以上宗旨外,还具备以下几个特点:

1、以游戏为主线,层层递进。随着时代的发展,教育面临的挑战,各国都在进行教学改革,其重心就是探讨“乐学”,提高教学效率。游戏教学在贯注“乐学”思想方面是独领风骚的。它依据教学内容创设情境,就是为了从根本上解决学生的“乐学”问题。教学游戏,是学生乐于学习之“源”。在这个“源”中,既有学生看得见、摸得着的实体形象,唤起学生学习的愉悦;又展现了学习的智力背景,鼓舞学生自动求知。它有感性认识的坚实基础,也有促使学生理性认识的桥梁;它调动学生智力因素与非智力因素的积极参与,也有着学生生理感官与心理需求的快乐与满足。它调动与调节学生左、右脑同时投人学习,激发学生以情感需要为核心的一切生理和心理上的因素,以此推动学生认真学习,顺利开展认知活动。教学开始,便以“玩”导人,先“玩”“送信游戏”,再“玩”“起立游戏”,接着“玩”走“数字迷宫”,最后结束时还许诺下次带学生到“数学乐园”里来玩。这一系列的“玩”做到了有序牵引,层层递进,激发了学生的“玩兴”,愉快而轻松地复习了10以内数的有关知识,真正做到了寓教于乐,寓学于乐,“乐”在活动中。

2、以学生为主体,人人参与。皮亚杰认为:儿童学习的最根本途径应该是活动。活动是联系主客观的桥梁,是认识发展的直接源泉。因此教师在课堂教学中要改变那种重教法、轻学法的状况,加强对学生学法的指导。在课堂上要给学生提供丰富的、充足的、典型的、较为完整的感性材料,有目的地创设学生活动的空间,调动学生的多种感官,放手让学生动手、动口、动脑全方位参与教学活动。使学生在生动活泼的实践中去发现、认识、理解、掌握所学知识,发展自己的认知结构。在教学中,把抽象的`数学知识同具体的实物结合起来,化难为易,化抽象为具体。而活动课,更应让全体学生“动”起来,做到人人参与,这节课便体现了这一点。第一个活动,全班学生参与“投信”,立即形成了热烈的气氛,学生的兴奋情绪受到激发。在第二个活动中,虽不是人人火爆,但做到了:一人表演,全班监督;一组参与,全班评价。第三个活动,处于“静态”的活动中,全班分组,人人以“笔”代“走”,画出走迷宫的路线。这样,这节课的学生参与率为百分之百,做到了参与内容广,参与时间长,教学效果好。

3、以知识为主流,面面俱到。活动课仅只是一种课堂形式,其内容才是活动课的实质。这节课为加深学生对10以内数的有关概念和计算的认识,把有关知识有机地、有序地分布在每个游戏中。第一个送信游戏,以计算为主,根据计算结果选择对应的信箱,一部分“死信”(结果无对应信箱)需作出不可投的判断,对误投的要订正处理,对投信的质量全班作出评价。第二个活动,巧妙地把前面与后面的位置问题、基数与序数的问题、加法和连加的问题,都安排在直观的对比中和活动的氛围中进行处理和巩固。第三个活动是知识的综合性运用,以顺序的认识为根本,走出不同的路线,认识不变中有变,并辅以简单的统计,复习最多与最少、同样多与多(少)几。这三个活动中的每个环节,都孕伏了所学的知识。在活动中,大容量的复习巩固已学过的知识。

4、以媒体为主向,项项直观。活动课是一种实践,实践需要媒体、需要直观,这一节课充分的体现了媒体和直观。执教者首先考虑了活动课的氛围,精心布置了场景,使学生亲临其境;其次,打破教室组织结构,去掉桌子,改坐四行,给学生一种新鲜感;第三,准备了不少实物道具,让学生实际操作,调动了学生的积极性;第四,执教者精心设计制作了电脑软件,其形式和形状都新颖、可爱,使学生在现代媒体中接受“美”的教育。

总之,这是一节生动活泼、情趣盎然、充分体现课程改革理念的低年级数学活动课。

一键复制全文保存为WORD
相关文章