二次函数数学教案(优秀2篇)

作为一名默默奉献的教育工作者,往往需要进行教案编写工作,借助教案可以有效提升自己的教学能力。来参考自己需要的教案吧!下面是整理的二次函数数学教案(优秀2篇),希望能够帮助到大家。

次函数数学教案 篇1

教学目标

1·从具体函数的图象中认识二次函数的基本性质,了解二次函数与二次方程的相互关系·

2·探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念·能够利用二次函数的图象求一元二次方程的近似根·

3·通过具体实例,让学生经历概念的形成过程,使学生体会到函数能够反映实际事物的变化规律,体验数学来源于生活,服务于生活的辩证观点·

教学重点

二次函数的最大值,最小值及增减性的理解和求法·

教学难点

二次函数的性质的应用·

《22·2二次函数与一元二次方程》同步练习

三、解答题

7·(1)请在坐标系中画出二次函数y=x2—2x的大致图象;

(2)根据方程的根与函数图象的。关系,将方程x2—2x=1的根在图上近似地表示出来(描点);

(3)观察图象,直接写出方程x2—2x=1的根(精确到0·1)·

《22·2二次函数与一元二次方程》练习题

16·(杭州中考)把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米)适用公式h=20t—5t2(0≤t≤4)·

(1)当t=3时,求足球距离地面的高度;

(2)当足球距离地面的高度为10米时,求t;

(3)若存在实数t1,t2(t1≠t2),当t=t1或t2时,足球距离地面的高度都为m(米),求m的取值范围·

次函数数学教案 篇2

教学目标

熟练地掌握二次函数的最值及其求法。

重 点

二次函数的的最值及其求法。

难 点

二次函数的最值及其求法。

一、引入

二次函数的最值:

二、例题分析:

例1:求二次函数 的`最大值以及取得最大值时 的值。

变题1:⑴、 ⑵、 ⑶、

变题2:求函数 ( )的最大值。

变题3:求函数 ( )的最大值。

例2:已知 ( )的最大值为3,最小值为2,求 的取值范围。

例3:若 , 是二次方程 的两个实数根,求 的最小值。

三、随堂练习:

1、若函数 在 上有最小值 ,最大值2,若 ,

则 =________, =________。

2、已知 , 是关于 的一元二次方程 的两实数根,则 的最小值是( )

A、0 B、1 C、-1 D、2

3、求函数 在区间 上的最大值。

四、回顾小结

本节课了以下内容:

1、二次函数的的最值及其求法。

课后作业

班级:( )班 姓名__________

一、基础题:

1、函数 ( )

A、有最大值6 B、有最小值6 C、有最大值10 D、有最大值2

2、函数 的最大值是4,且当 =2时, =5,则 =______, =_______。

二、提高题:

3、试求关于 的函数 在 上的最大值 ,高三。

4、已知函数 当 时,取最大值为2,求实数 的值。

5、已知 是方程 的两实根,求 的最大值和最小值。

三、题:

6、已知函数 , ,其中 ,求该函数的最大值与最小值,

并求出函数取最大值和最小值时所对应的自变量 的值。

一键复制全文保存为WORD
相关文章