身为一名到岗不久的老师,我们的工作之一就是课堂教学,写教学反思可以很好的把我们的教学记录下来,快来参考教学反思是怎么写的吧!这次漂亮的小编为您带来了鸡兔同笼教学反思(最新5篇),希望能够帮助到大家。
一年一度的校本教研——“两课两反思”活动如期而至,有幸代表六年级数学组参与其中。这次活动的主题为“数学思考”,根据这一主题,会同本组老师意见和自身条件,结合学生实际认知水平,我选择了执教人教版数学六年级上册数学广角的一节内容——鸡兔同笼。
这一题材,在不同版本的教材其编排不尽相同。如:北师版教材借助“鸡兔同笼”这一载体让学生经历列表——尝试——再调整的过程,体会解决问题的一般策略——列举,旨在通过对一些现象观察、思考,是学生发现一些特殊的规律,获得解决问题的方法;人教版教材则先后呈现了猜测列表法、假设法、列方程、抬腿法等,注重体现不同的解题思路和方法,旨在观察、猜测、实验、推理等活动,培养学生的逻辑思维能力,使学生体会代数方法的一般性;而苏教版呈现的是画图与列表,但更强调画图。
对于“鸡兔同笼”问题,一些学生通过校外的辅导班曾学习过,学生知道如何求解“鸡兔同笼”的方法,但对于为什么是这样却说不明白其中的原因。而这一课题,xx、xx、xx、xx等名师都上过,也有不少经典的教学案例,但其侧重点不同,风格也不一样。面对自己的学生,他们的教学案例不一定适用于我们学生实际。同一个载体——鸡兔同笼问题,不同的老师,在不同的学段可以教出不同的知识点。教材其实只是个载体,同一个题材你可以赋予它不同的使命,这也许就是大家常挂在嘴边的“用教材教”。钻研教材,除了研究教材所蕴含的知识,我觉得更要深入地了解知识的来源及其背景。研究的目的除了找出重点、难点和关键,更重要的是挖掘数学知识中的数学思想方法。以此为依据,我在教学这一内容,应该可以上出我的“新意”。我能留给孩子些什么呢?我想到了解题策略、数学模型、数学文化??
站在大师们的肩上,结合学生的实际及我对教材的理解,课始由猜硬币游戏引入,有效激发学生的学习积极性,并对后续“鸡兔同笼”的研究奠定解题方法基础,然后开门见山的引出本节课要研究的主题“鸡兔同笼”问题;以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法和方程法等多种解题策略和方法,并加以多媒体课件的展示,帮助学生比较直观形象的理解解题方法,从而更好的突出本节课的重点;接着引出《孙子算经》中的一个数据比较大的鸡兔同笼问题,先让学生用自己刚刚学到的方法进行解决,然后再激发学生“了解古人的解题方法”欲望,让学生自主的`去阅读书中的一段阅读资料,了解古人的解题方法。老师再利用多媒体课件展示当代的张景中院士等人新解法。
通过介绍这些从古代到当代,从画图、列表、假设到方程等方法,揭示人类从对问题的坚持不懈地研究中获得乐趣,从数学文化的角度对本课进行拓展。最后就是利用学到的方法解决生活中类似的“鸡兔同笼”问题,让学生真正感受到数学与生活密不可分,数学知识来源与生活,同样也运用于生活。
鸡兔同笼”原属于奥赛典型题,如今编入新课程教材第十一册中。对学生尤其是基础不好的学生来说有一定的难度,因此,我认为必须让学生经历从多种角度思考,运用多种方法解决问题的过程,使学生展开讨论,根据自己已有的知识经验,不断调整解题策略,在汇报交流中,逐步探讨出不同的方法,找到合理解决问题的策略;并在合作交流学习的过程中,学会倾听,在倾听中分享他人的不同的解题方法和策略,积累自己解决问题的经验,掌握解决问题的方法,并灵活运用该方法解决生活中的类似“鸡兔同笼”问题。
特别是用假设法解答,学生理解起来很难,为此我利用课件展示的图片的方法来帮助学生理解,这样把抽象的知识直观化了,学生很快理解了这种方法。在教学中我做到了三个“注重”。
一是注重了沟通列表与假设法、抬腿法、列方程等方法之间的联系。二是注重了学生对数学模型的建立。课前,我仔细揣摩了郑毓信教授在《数学教育哲学》中的一句话:“数学教学的基本任务就在于帮助学习者逐步建立与发展分析模式、应用模式、建构模式与欣赏模式的能力。”我怎样将这样的理性论断转化为教学行为,让学生在学习中感受到一些数学问题所具有的“模型”力量呢?带着这样的思考。我做了如下教学尝试。
一、猜测游戏,引入新课,增加开课的趣味性。
二、尝试学习,独立思考。有选择地让学生交流几种典型的解法,是对独立尝试解题过程的适度敛收,是对教学进程中动态生成的教学资源的甄别与有效利用;教师有选择地呈现学生的不同解题策略以及适当的点拨和精当的补充,凸显教学是教与学的统一。从展示不同做法中,进一步拓宽了学生的视野,感受数学文化、数学思维不仅有理性的深邃,也有感性的快乐。
三、优化算法、建立模型。通过对几种典型解法的梳理、分析、比较,使学生在掌握不同解法的同时,能懂得这些解法之间的区别和联系。在解决问题的过程中逐渐形成鸡兔同笼问题的“数学形式”及其解题策略体系,建构起鸡兔同笼问题的数学模型。人狗同行问题的介绍使课堂又增添了几分鲜活。
四、运用所学、解决问题。设计立足生活的的问题情境使学生在实践中领悟数学建模的价值,增强学生数学应用的意识与能力
回顾两次的执教,存在一下问题,值得我们进一步提高与思考:
1.由于注重模式,合作交流,教师点拨这一块不够透彻,没有关注到差生。学生汇报时,老师引导多了点,可以多找学生汇报,其他学生可能会听得更明白。
2、培养学生质疑能力,听不明白的及时向别人提问,及时解决不懂的问题。
3、没引导学生用画图的方法解决问题,是否少了从形象到抽象的过程。
4、学生比较喜欢假设法,但发现推理时思路不清,容易出错,如果及时指导学生写推导过程就会较好地避免问题的出现。
5、小组合作学习中教师如何调控才能进一步提高合作学习的效率,如时间的把握、学生合作过程的控制、合作学习的效果等;
6、有意义的练习及作业的设计要考虑有利于知识点的落实,要能激发学生的兴趣,还要考虑练习内容的层次性,手段的灵活性,逐步培养学生的创新能力和动手能力,在此方面还需待提高。
《鸡兔同笼》 向学生提供了现实、有趣、富有挑战性的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用列举法、假设法、方程等方法,从多角度思考,运用多种方法解题,使学生在具体情境中,根据自己的经验,逐步探索不同的方法,找到解决问题的策略,并在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的'方法 。
鸡兔同笼问题是一类重要数学问题,在现代生活中随处可见。
(1) 三轮车和自行车共 7 辆 ,17 个轮子。三轮车、自行车各有几辆?
(2) 小方有 2 分、 5 分硬币共 10 枚,共有 32 分。 2 分、 5 分硬币各有几枚?
回过头来我们在来看一看《孙子算经》里的这道题:今有鸡兔同笼,上有三十五头,下有九十四足。问鸡、兔各几何?你能拭着做一做吗?
对于我班多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。本节课属于综合应用课,其目的是加强数学知识与现实生活中问题的结合,以提高学生综合应用的能力。借助“鸡兔同笼”这个载体,初步获得一些数学活动的经验,在活动中引导学生自主探索,积极思考,从中体会出解决问题的一般策略。
在本节课的教学中,我感觉:
1。 课堂上,多数学生的积极性还是比较高的。先让学生独立思考或小组讨论,再在全班共同交流评价。学生在民主、和谐的氛围中开拓了思维,达到了运用多种方法解决问题的目的。体现了学生是学习的主人。但部分学生会做却不会表达、不敢表达。口语表达能力欠佳。
2。 课堂上,通过学习,使学生知道了假设的数学思想不仅可以解答古代趣题 ―― 鸡兔同笼问题,还能解答我们身边的问题。体会到数学就在我们身边。
3 、课堂上,注重关注每一个同学的发展,在交流探讨中,鼓励不同学生采用不同的解题方法。效果还不错。
课前我对我班的学生进行了估计。一小部分学生接触过鸡兔同笼问题,但对于多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。所以在这节课当中,我决定主要借助教师引导探究这个手段,让学生在尝试,探索,合作中弄懂鸡兔同笼问题的基本解题思路,这也是我校推广的三环六部教学法。
师生共同经历了三种不同的列表方法:逐一列表法、、跳跃式列表法、取中列表法后问:能用图形来表示鸡兔头和腿之间的关系吗?引导学生画图的方法去试:先画20个圆圈表示20个头,再在每个动物下面画两条腿,20只动物只用了40条腿,还多出14条腿,把剩下的14条腿要给其中的几只动物添上呢?(7只动物分别添2条腿)。这7只就是兔子,另外的13只就是鸡。这时候有学生问能把动物都看成是4条腿的吗?在师生们的共同操作下再把腿依次减少,也得到了同样的结论。
虽然这只是一个简单操作活动,但是,在画图的过程中充分调动了学生的积极性,经历了一个探索的。过程,这时候再介绍假设法就水到渠成了。也实现了运用多种方法解决问题的目的。起到了意想不到的效果。
就本堂课而言,还存在以下问题;
1、由于注重模式,合作交流,教师点拨这一块不够透彻,没有关注到差生。
2 、我在假设之后怎么验证结果是否正确分析得较细,但对怎么假设觉得没有引导好,过程中出现了学生只假设了鸡的只数,然后根据腿的数量去推算出兔的只数,误解了题意。
3 、没有出示一个完整的表格,在引导学生用简便方法调整假设时的讲解上不直观,只有部分优生能理解。
《鸡兔同笼》在以前是属于奥赛典型题,如今编入新课程教材第十一册中。
对学生尤其是基础不好的学生来说有必须的难度,个性是用假设法解答,学生理解起来很难,我主要借助教材上的列表法同时结合引导学生画图的方法,再配合假设法。充分运用了动手操作这个手段,让学生弄懂鸡兔同笼问题的基本解题思路。例:鸡兔同笼,有35只头,94条腿,鸡、兔各有多少只?
我先化繁为简,把例题改为8只头,26条腿。刚开始采用教材中的逐一列表法,让学生自己去推算出来,学生觉得这种方法罗嗦。我就推荐用中间列表法,发现鸡4只,兔子4只,腿就一共有24条,再进行增加或减少,最后得到了3只鸡,5只兔。学生的速度就加快了。
另外,引导学生透过对表格的理解,利用假设法来解决问题。再透过画图验证:先画8个圆圈表示8个头,再在每个动物下面画两条腿,8只动物只用了16条腿,还多出10条腿,把剩下的10条腿要给其中的几只动物添上呢?(5只动物分别添2条腿)。这5只就是兔子,另外的3只就是鸡。画图的思考过程实际也就是假设方法的思考过程。学生听明白以后,让学生试着做练习题。
最后还指导学生运用方程来解决这类问题,他们对本节课掌握的还不错,这天的一些题目里也证明了学生喜欢这类题目,虽然很难,但我相信,只要学生喜欢了,那么再难的数学题都不是问题了。
鸡兔同笼问题是我国民间广为流传的数学趣题。最早出此刻《孙子算经》中。教材首先透过富有情趣的古代课堂,生动地呈现了在《孙子算经》中记载的“鸡兔同笼”问题,并透过小精灵的提问激发学生解答我国古代著名数学问题的兴趣。
本节课我从较简单的问题入手,让学生尝试解决,熟悉此类题型的一般思路,再让学生以填表的方式初步体验鸡兔同笼状况下两种动物的只数和脚的数量之间的关系,同时探索随着鸡兔只数的。变化,脚的数量也跟着变化的规律。透过展开小组讨论,引导学生从体验鸡兔同笼中鸡兔的头数和脚的只数关系到用“假设法”和列方程解的方法经历探究过程,此环节是本课的重点,学生从体验、尝试到此处的讨论、汇报,个人或群众的智慧在那里得到展现,方程解、算术解对于大部分学生来说至少有一种方法是他自己理解或掌握的。
但是,可能是由于我课前准备不够充分,或者驾驭课堂的潜力有限,在学生汇报的过程中没有做到机敏地倾听和机智地诱导,对于学生的列式没有指明理由,因此感觉学生在全班交流的过程中出现不能理解的状况。我觉得可能是在处理鸡兔只数和脚的数量变化规律的推导过程时,我直接让学生透过表格的形式进行观察,并没有引导学生到比较实际的方向上。
如果我能插入具体的鸡和兔的只数变化时的动态图像,学生就应能更加直观的体会到其中的规律,那么对后面的教学展开将易如反掌。由于此处设计的失误,导致后面的方程解的方法时间不够,课堂巩固练习也没能很好的展开。我想这也可能是我在设计教案时并没有准确思考到学生自身的实际认知水平,本课资料安排过多。如果下次再次教学鸡兔同笼,我想我会把假设法和列方程解的方法分成两个课时,争取让大部分学生都能从多角度思考,运用多种方法来解题。