作为一名人民教师,就难以避免地要准备教案,编写教案有利于我们科学、合理地支配课堂时间。那么什么样的教案才是好的呢?这次帅气的小编为您整理了分数乘法六年级数学上册教案【优秀4篇】,希望可以启发、帮助到大家。
教学内容:
课本练习四的第6~10题。
教学目的:
1.使学生进一步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法应用题。
2.培养分析能力,发展学生思维。
教学重点:
正确分析数量关系,找准单位1
教学难点:
依题意正确画图
教学过程:
一、复习。
1.先说出下列各算式表示的意义,再口算出得数。
2.指出下面每组中的两个量,应把谁看作单位1。
(1)梨的筐数是苹果的。
(2)梨的筐数的和苹果的筐数相等。
(3)白羊只数的等于黑羊的只数。
(4)白羊的只数相当于黑羊的。
3.教师给上面的第2题每个小题补充一个已知条件,再要求学生口头提出问题并解答。
(1)有40筐苹果,梨的筐数是苹果的。()?
(2)梨的筐数是和苹果的筐数相等,有40筐。()?
(3)有40只白羊,白羊的只数的等于黑羊的只数。()?
(4)白羊的只数相当于黑羊的,有40只黑羊。()?
二、新授。
1.出示例3。
小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的。小新储蓄了多少元?
(1)指名读题,说也已知条件和问题。
(2)怎样用线段图表示已知条件和问题。
先画一条线段,表示谁储蓄的钱数?为什么?
学生回答后,教师画线段图。
再画一条线段,表示谁储蓄的钱数?画多长?根据什么?学生回答:
根据小华储蓄的钱数是小亮的,把小亮的钱数作为单位1,平均分成6份,再画出与这样的。5份同样长的线段。
然后画一条线段表示谁的钱数?画多长?根据什么?引导回答:
根据小新储蓄的钱数是小华的,把小华的钱数作为单位1,平均分成3份,再画出与这样的2份同样长的线段。
教师画:
(2)分析数量关系。
引导学生说出,从已知条件或从问题分析,说出要求小新储蓄的钱数,必须先求小华储蓄的钱数。因此这是一道两步计算的应用题。
(3)确定每一步的算法,列式计算。
①求小华储蓄的钱数怎样想?
引导学生回答:根据小华储蓄的钱数是小亮的
把小亮的钱数看作单位1,就是求18的是多少,所以用乘法计算。列式:
(元)
②求小新储蓄的钱数怎样想?
引导学生回答:根据小新储蓄的钱数是小华的,把小华的钱数看作单位1,就是求15的是多少,所以也用乘法计算。列式:
(元)
把上面的分上步算式列成综合算式,该怎样列?
(元)
(4)检验,写答语。答:小新储蓄了10元。
2.做一做。
让学生独立完成课本第19页下的做一做,先画线段图表示已知条件和问题,独立解答后,进行订正。指名说一说自己是怎样确定计算方法的。
3.小结。
从上面的分数乘法两步应用题看,与前一节所学的一步应用题有什么相同点和不同点?解答这类应用题的关键是什么?怎样判断计算方法?
学生回答后,教师归纳:今天学的是连续两次求一个数的几分之几是多少的应用题。解答这类应用题的关键是要能正确地判断第一步把谁看作单位1,第二步把谁看作单位1。
三。巩固练习。
完成练习四的第6、7题。
四、全课小结。
这节课我们共同研究了什么?
解答这类分数乘法两步应用题关键是什么?
五、布置作业。
完成练习四的第8~10题。
教学目标:
知识与技能
1.理解分数乘整数的意义。
2.通过主动参与教学过程,理解分数乘整数的计算法则的算理,能正确计算。
过程与方法
使学生经历解决问题的过程,体验演绎推理、归纳总结的学习方法。
情感态度与价值观
1.感受数学与实际生活之间的联系,激发学习兴趣。
2.培养学生动手动脑的学习习惯,体会数学知识之间内在联系的逻辑之美。
教学重点:
理解分数乘整数的意义,探究计算法则。
教学难点:
正确计算及约分方法。
教学过程:
一、以旧引新,唤醒认知
(一)列式计算,说说你是怎样想的? 5个12相加是多少?10个23的和是多少? (概括:整数乘法的意义:求几个相同加数的和的简便运算)
(二)口答
(三)感受分数乘整数的意义
21个相加太麻烦了,有没有简单的表示方法?(学生会想到用乘法表示成 ×21)然后让学生说一说 ×21表示的含义。 揭题:怎样计算 ×21呢?今天我们就来学习分数乘法——分数乘整数。
二、出示问题,探索新知
1、自主学习红点1。
(1)出示窗1:小鸟风筝的尾巴是用5根布条做成的,小鱼风筝的尾巴是用6根布条做成的,每根布条长都是 米。学生提出用乘法计算的数学问题。 出示红点1问题:做小鸟风筝的尾巴一共需要多少米的。布条?指名口头列式。
(2)自学提示: ×5表示什么意义?两个小朋友分别是怎样计算的?学生自学课本47页。
(3)交流、质疑。
(4)比较这两种方法的联系和区别。 计算5个 相加是多少,一种方法是加法,另一种方法是乘法。 但结果是相同的。你喜欢哪种方法? 教师指出,用乘法计算比较简便,其中连加的步骤在计算时可以省略。 板书简便的写法: ×5= = (米)
2、自主学习红点2。
(1)出示问题:做小鱼风筝的尾巴,一共需要多少米的布条? 学生尝试独立解决。指名板演。集体评议。
(2)比较计算过程,分类梳理:a先计算再约分;b先约分再计算。讨论:哪种算法更简便? 6× = = =3(米) 比较两种先约分再计算的方法: ×6= =3(米) ×6= ×6=3(米) (3)小试牛刀(突破难点):用自己喜欢的方法计算。 6× = ×13= 评议谈体会。强调:分数乘整数,通常先约分再计算比较简便。
3、归纳概括: 一个分数乘整数表示什么?(求几个相同加数的和。) 分数乘整数怎样计算?(用分子和整数相乘,分母不变 ) 应注意什么?(能约分的要先约分)
三、分层练习,强化认知 .巩固分数乘整数的意义
1、自主练习第1、2题:看图写算式。集体订正,说说乘法算式的意义和计算过程。
2、计算擂台。自主练习第3题,巩固分数乘整数的算理和算法。
3、明辨是非。
4、结合实际,解决问题。
(1)一个正方体的礼品盒,底面积是 1/9平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?
(2)美术馆要进行美术展览,有5张画是边长7/10 米的正方形的,如果为这几幅画配上镜框,需要木条多少米?
四、总结
本节课学习了那些内容?通过学习你有那些收获? 分数与整数相乘,要用分数的分子与整数相乘,分母不变。计算时能约分的可以先约分再计算出结果。
教学内容
先约分再计算结果的分数乘法
教材第5页的内容、练习一的第7~13题,第8页例5。
教学目标
1.通过学习,理解分数乘分数的计算法则也适用于分数和整数相乘,加深对分数乘法计算法则的理解。
2.进一步提高学生计算的准确性和灵活性。
3.培养学生良好的书写习惯。
重点难点
正确掌握分数和整数相乘的约分方法,灵活计算。
教具学具
口算卡,练习题投影片。
教学过程
一、导入
1.说出下面各算式的意义。
二、教学实施
1.揭示课题。
老师:我们已经会计算分数乘分数了,而整数也可以看作分母是1的假分数,所以我们也可以用分数乘分数的法则来计算分数乘整数的算式。
板书课题:分数乘整数的约分方法
2.出示例4。
(1)明确题意。
请学生读题,并找出已知条件和问题。
(2)理解题意。
少千米,用什么方法计算?为什么?
学生甲:应该用乘法计算。因为是在求一个数的几分之几是多少。
学生乙:已知速度和时间,求路程,用乘法计算。
老师:同学们从不同角度说明了这道题为什么用乘法计算,有的同学想到了分数乘法的意义,有的同学想到了“路程、速度和时间”这三者之间的关系,真的很棒。
学生互相交流,得出结论。
(3)计算。
提问:怎样计算更加简便?
明确:能约分的可以先约分再乘。
(5)分析错因。
提问:为什么第三种答案与其他两种不同呢?错在哪里?
学生自由发言。
追问:分数和整数相乘怎样约分?小结:因为整数都可以看作分母是1的分数,所以分数乘分数的法则也适用于分数乘整数。
3.巩固练习。
(1)完成教材第5页的“做一做”。
学生可以先说意义再计算,集体订正答案时,请学生说出计算方法。
(2)完成教材第6页练习一的第7题。
老师对掌握程度不同的学生可以有不同的要求,引导学生找出当一个数分别乘一个比1大的数、比1小的。数和等于1的数时,积与第一个因数之间的大小关系。
(3)完成教材第6页练习一的第8~13题。
学生独立完成后,集体订正答案。
4.出示例5。
(1)明确题意。
请学生读题,并找出已知条件和问题。
(2)探究算法。
老师:我们已经学会分数乘分数、分数乘整数的计算方法,那么分数乘小数怎么算呢?
板书:分数乘小数的计算方法
学生1:可以把2.1转成分数进行计算。
三、课堂作业新设计
1.在○里填上“>”“<”或“=”。
四、思维训练
1.先计算下面各题,说一说发现了什么规律。参考答案
(2)略
板书设计
分数乘整数的约分方法
分数乘分数的简便算法是先约分,后计算,计算结果必须是最简分数。
运用约分对分数乘分数进行简便运算时,约分后分子和分母必须只有公因数1,计算后的结果才是最简分数。
分数乘小数的计算方法。计算小数乘分数时,可以把小数转化成分数进行计算,即分子与分子相乘,分母与分母相乘,然后约分就可以了;也可以把分数化成小数,按照小数乘小数的计算方法进
行计算;在计算小数乘分数时,如果小数能和分数的分母约分,可以先约分再计算,这样可以使计算简便。
备课参考教材与学情分析
本部分内容主要教学分数乘法在乘的过程中的简便的书写格式。教材一方面把分数乘法的两种形式集中呈现,加强它们之间的对比和联系,一方面提出分数和整数相乘怎样约分的问题,让学生知道除了像例4那样进行约分,也可以把分数的分母与整数直接约分。这部分内容是在学生学过分数乘整数的基础上进行教学的,它是后面学习分数除法以及分数乘除法应用题的基础。
课堂设计说明
1.加强两种形式的乘法的对比练习。
学生已经理解了分数乘整数和分数乘分数的意义,通过对比练习可以找到两种形式的乘法之间的联系。
2.引导学生观察教材的约分过程,想一想与例2的约分形式有什么不同。特别要注意提醒学生要先观察能否约分,并且注意提醒他们不能把整数与分数的分子约分。
教学目标:
1、加深对解决求一个数的几分之几是多少的问题思路与计算方法的理解,使学生学会解答稍复杂的求一个数的几分之几是多少的问题。
2、发展学生分析推理能力和解决实际问题的能力。
教学过程
播放公路上往来不断的车辆及噪杂的声音。
师:噪音对人的健康有害,绿化造林可以降低噪音。
出示画面(如教材第20页情境图)请学生说说对图意的理解。
师:从图中我们知道了公路上车辆的声音是80分贝,经过绿化带的隔离,噪音降低了1/8。根据这些条件,你能提出什么问题?
学生提问题,教师板书。(噪音降低了多少?绿化带这边听到的声音是多少分贝?)
师:我们来解决第一个问题:噪音降低了多少?谁能把问题完整地叙述出来。
生:公路上测得声音为80分贝,经过绿化带的隔离,噪音降低了1/8,噪音降低了多少?
出示线段图
请学生把条件与问题在线段上表示出来。
提问:把谁看作单位“1”?然后让学生独立解答。
师:现在我们解决第二个问题。谁能把问题完整地叙述出来?
生:公路上测得声音为80分贝,经过绿化带的隔离,噪音降低了1/8,现在听到的声音是多少分贝?
师:线段图上哪一段表示“现在听到的声音有多少分贝”?
把线段图补充完整。
小组讨论探讨解决方法。
汇报交流方法。
第一种方法:先求出降低了多少分贝?再用原来的分贝数减去降低的分贝数。
列式80-80×(1/8)=70(分贝)
第二种方法:先求出现在听到的分贝数是原来分贝数的几分之几?再求出现在听到的声音有多少分贝?
列式
提问:1-1/8表示什么?在线段图上表示出来。
师:比较这两种方法有什么不同?
学生讨论交流。明确两种方法都是把原来声音的80分贝看作单位“1”,都需要求80分贝的几分之几。但是第一种方法是根据已知条件先求出80分贝的`1/8是多少,即降低了多少分贝,再求出现在听到的声音的分贝数。第二种方法是根据问题找到现在听到的分贝数占原来声音80分贝的几分之几,再根据分数乘法的意义求出现在听到的声音是多少分贝。