作为一位不辞辛劳的人民教师,时常需要编写教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。那么教学设计应该怎么写才合适呢?下面是小编精心为大家整理的五年级数学上册教案优秀5篇,在大家参照的同时,也可以分享一下给您最好的朋友。
我所在的班处在农村地区,班级有40名学生。其中优生的比例约占40%,合格的约占20%,极差的学生有5%。班级总体感觉良好,对学习数学有比较浓厚的兴趣,思维活跃,有自主探索知识的学习习惯,成绩稳定。但是家长的辅导不令人满意。
教学目标:
1、知识与技能:掌握数方格的顺序和方法,能用数方格的方法计算一些不规则图形的面积,能正确估计不规则的图形面积的大小。
2、过程与方法:能借助方格图估算不规则图形的面积,在估算面积的过程中,体验解决问题策略的多样性,培养初步的估算意识和估算习惯,体验估算的必要性和重要作用。
3、情感态度价值观:提高学生运用数学知识解决实际问题的能力,让学生体会数学源于生活,用于生活。让学生欣赏大自然的美,使学生体会环保的重要性。
教学重点:利用方格图估计不规则图形面积。
教学难点:估算的习惯和方法的选择。
教学过程:
一、情境引题,学习新知:
1、创设情境,揭示课题:
师:从我们牙牙学语到认识数字,从我们拿起笔到记录生活中的开心快乐,同学们每天都在不知不觉中成长。我想:只要同学们努力学习科学文化知识,成功的道路上必将留下你们一串串成长的脚印。(揭示课题:成长的脚印)
2、情境入题,学习新知:
师:今天,老师带来了小华出生时的脚印图片。怎样才能知道这个脚印的面积有多少呢?
(1)学生自己先独立进行估计,然后小组内进行交流。
(2)全班交流:
生1:我们是用数格子的方法来进行计算的,我先数了数满格的大约是11个,其他不够一个格子的我进行了拼补,这样大约是17cm2。
生2:我们的方法也是这样的,我们把不满一格的按照一格进行计算,这样大约是18 cm2。
师:大家都是用数方格的方法估计的,还有没有其他的估算法呢?
生1:可以把这个脚印看成了近似的长方形,长8厘米,宽2厘米,所以面积是2×8=16 cm2。(课件演示此方法)
生2:我有个不同的方法,我是看成了近似的梯形,上底约2厘米,下底约2.5厘米,高约8厘米,根据梯形的面积公式,算出(2+2.5)×8÷2=18cm2。
(3)课件出示小华两岁时的脚印,学生估面积:
3、小结方法,实践新知:
(1)师:刚才大家对像脚印这样的不规则图形的面积进行了估算,想想刚才大家用什么方法进行估算的?
师板书:1、借助方格图数一数所占的格数。
2、把它看成一个近似的规则图形,测量后进行计算。
(2)请同学们算一算自己脚印的面积约是多少?
学生自己先独立取脚印,然后借助附页3的方格图估算脚印面积。
二、新知实践,解决问题:
1、估算不规则图形的面积:
(1)学生独立进行估计:
(2)交流汇报时让学生说说自己是怎样估计的。
2、估算手掌的面积:
(1)师:估一估自己手掌的面积:
(2)学生合作估算并在方格纸上验证:(学生在此环节开展好帮差活动)
三、课后实践,体会环保:
1、估算一片树叶的面积:
2、体会绿树对环保的重要性:
(1)如果一棵树有10000片树叶,估算这棵树所有树叶的总面积。
(2)在有阳光时,大约每25 m2的树叶能在一天里释放足够一个人呼吸所需的氧气。这棵树在有阳光时,一天里释放的氧气能满足多少人呼吸的需要?
四、课堂回顾,总结提高:
同学们,今天你们有什么收获?有什么体会?说来听听。
板书设计:
成 长 的 脚 印
不规则图形面积的估算:
1、借助方格图数一数。
2、把它看成一个近似的规则图形,测量后进行计算
教学反思:
这节课的重点是掌握估计不规则图形面积的计算方法,难点是如何转化为近似的基本图形。在讲这节课之前,我一直觉得这节课很难教,学生应该很难理解如何近似的看成基本图。但是,结果出乎意料,学生理解掌握得不错,能够把不规则图形近似确定成基本图形,然后再计算。
首先,在课题引入时,先复习组合图形面积的计算方法——可通过“分割”或“添补”的方法,转化为已学过图形的面积,再计算。强化学生“分割”和“添补”图形的能力,为估算不规则图形的面积做铺垫。然后,通过课件展示几幅不规则的图形(如:树叶、鱼、布娃娃等等),让学生通过观察,说出他们的发现,这些图形有什么共同点?与以前学过的图形相比较,让学生通过对比,引导学生说出,这些图形都是不规则图形。最后,谈话引入新课:其实现实生活中有很多类似这样的不规则图形,如何估算这些图形的面积呢?这一节课,我们将共同探讨这个问题。让学生带着问题学习,有目的的学习,并知道学习估算不规则图形面积的重要性,这样他们学得更投入、更有热情!
在探索新知时,先出示“成长的脚印”图形,让学生通过观察,用自己喜欢的方法估算出“脚印”的面积,再让他们小组交流讨论,最后让学生说出自己的估算过程和思路。这时,很多学生还是用数方格的方法,但是学生在交流自己的估算过程时,就有疑问,不满一格而且又不规则的,如何更好的估算面积呢?先不直接告诉学生方法,让学生讨论可以用什么方法估算,最后还是没得到满意的方法。这时,学生带着强烈的好奇心,非常想要知道如何估算面积。此时,教师再引导学生通过“分割”“添补”的方法,把不规则图形近似的看成已学过的基本图形的面积,再计算。最后再通过课件演示这个过程,并在方格纸的“脚印”中画出近似基本图,给学生一种视觉上的刺激,让学生很直观地观察估算的过程,学会把不规则图形近似的看成基本图再计算的方法。再让学生用这种方法估算小华2岁时的脚印面积,让学生先独立完成,再全班交流,让学生说出他们是如何近似的看成基本图,最后也用课件演示整个估算过程,画出近似基本图。巩固学生把不规则图形近似看成基本图再估算的能力。
通过练一练的两道习题,再加强巩固估算不规则图形面积的方法,先让学生独立完成,再小组交流讨论,最后再全班交流。展示学生的作品,让学生说出他们自己的估算思路,全班学生一起观察判断是否估算正确,最后再用课件演示画出近似图。这个过程,让学生自己说出自己的估算思路,其他同学一起观察判断,既能锻炼学生的表达能力,也能锻炼学生集中精神注意判断同学的估算是否正确,还能检查学生是否已掌握此种估算的方法,一举三得,何乐而不为之呢?
教学内容:
人教版小学数学五年级上册第28页例4及“做一做”、第29页例5及“做一做”,练习七1——6。
教学目标:
1、理解并掌握一个数除以小数的计算方法,能正确进行笔算。
2、经历将除数是小数的除法转化成除数是整数的除法的推导过程,能正确运用竖式进行一个数除以小数的计算。
3、培养学生分析、转化和归纳的能力,进一步提高学生的计算能力和解决实际问题的能力。
教学重点:
掌握一个数除以小数的算理和计算方法。
教学难点:
能把除数转化成整数,正确移动被除数的小数点。
教学准备:
小故事,题卡
教学过程:
一、创设情境,走进新课
(一)故事激趣,铺垫新知
小故事:猴王分桃。
花果山上桃子丰收了,猴王要给大家分桃子。他对一只小猴说:“给你6个桃,平均分给3只小猴吧!”小猴嘟囔着:“那么点!”猴王听了又说:“那就给你60个桃,平均分给30只小猴!”小猴说:“真小气!”猴王把手一挥:“好,给你600个桃,平均分给300只小猴,你满意了吧!”小猴子听了,高高兴兴地领桃子、分桃子去了。分完桃子,小猴又纳闷了,这是怎么回事呢?
(1)、提问:你们知道小猴为什么又纳闷了吗?同学们快点算一算每只猴子分到了几个桃子?在这个故事中隐藏着一个数学知识,谁知道?
(2)背商不变的性质。(在除法里,被除数和除数同时扩大或缩小相同的倍数(0除外)商不变。)
(二)铺垫新知(运用商不变性质填空)
1.在括号里填上适当的数。
(1)7.53÷0.3=( )÷3;
(2)300.3÷1.43=( )÷143。
二、教学新知,探究算法
(一)激情引入,探究新知
1、请大家把书打到28页认真阅读例4的情景图,弄清题意。
2、图中的奶奶在干什么?
3、说说已知条件,未知条件,列式。(7.65里面有多少个0.85)7.65÷0.85
看看这个算式和前面学习的小数除法算式有什么不同?
(除数是小数,这就是我们今天要学习的)(板书课题)《一个数除以小数》看到课题你想知道什么?同学们的问题真好。
4、探究计算方法。
(1)下面同学们在小组里看能不能用以前的知识解答7.65÷0.85=?看那组的方法多,那组的方法最简单?有没有信心?
5、汇报:那个小组先来说说?
(1)利用商不变性质给除数、被除数同时扩大到原来的100倍,765÷85=9(个)
(2)换单位,0.85米=85厘米,7.65米=765厘米765÷85=9(个)
回顾一下这两种解决问题的方法,你有什么发现吗?
生:都是把7.65÷0.85转化成了765÷85,都是将除数转化成了整数。
师:对,其实,我们这里应用了一种转化方法,转化是一种非常重要的数学思想和方法,希望同学们好好学习和运用。
(3)用竖式算。(指名板书)
6、讨论竖式的书写形式。
(1)在与学生的互动交流中逐步检查竖式计算过程。
(2)做这道题时首先想到将谁转化成整数,(除数)
所以小数点的移动由那个数来确定?(除数)
(3)口述答语,同学们也是这么做的吗?真聪明!
7、比较三种方法,那种简单。
(二)尝试练习,总结算法
1、第28页的“做一做”,第4小题是第29页的例5
(1)按要求完成各题。
(2)想一想,怎样验算上面各题?(验算第一小题)
(3)计算12.6÷0.28(当被除数比除数小数位数少时怎么办?)
2、总结除数是小数的除法计算方法。
(1)学生讨论、交流,用自己的语言描述除数是小数的除法计算方法。
(2)完成29页的填空。
小结:“一看、二移、三计算”。(出示方法齐读,并记忆。)
(同学们课前你们提的问题现在解决了吗?)
三、运用新知,巩固算法(达标测评)
四、全课总结,畅谈收获
师:通过这节课的学习,你有哪些收获?
生1:我学会了怎样计算除数是小数的小数除法。
生2:我知道了在遇到新问题时,要善于动脑,把新知识转化成已学过的知识,就能解决问题了。
生3:我还认识到了学习数学是很有用的,它可以帮我们解决生活中的一些数学问题。
还有什么疑问?
这节课我们学习了一个数除以小数的计算方法,还解决了生活中的一些问题,同学们学的都很认真。
五、布置作业
课题:负数的初步认识
(1) 第 1 课时总第课时 教学目标:
1、使学生结合现实的问题情景了解负数产生的背景,初步认识负数。会用正、负产生数表示日常生活中具有相反意义的量;会正确读、写负数。
2、能正确区分正数、负数和0。
3、感受正、负数与日常生活的密切联系;获得一些成功的学习体验。 教学重点:理解负数的意义,能应用正负数表示生活中具有相反意义的量。
教学难点:理解负数的意义,能应用正负数表示生活中具有相反意义的量。
教学准备:课件
教学过程:
一、课前游戏 。(3分钟)
我们先来做个游戏。游戏的名字叫“与我相反”。游戏规则是:老师说一句话,你们要快速地说出与这句话意思相反的话。
1、服装店今年八月份赚了2000元。
2、我在银行存入了300元。
3、我向南走了100米。
4、零上10摄氏度。
引入谈话:在生活中,像这样意思相反的情况还真多,今天,我们将研究如何用数学的方法表达这些内容。
二、自学例1。(10分钟)
1.自学。
出示:教材例1情境图。
学生自学时,教师巡视了解学生的自学情况。
导学单:
1.3个城市的最低气温分别是多少摄氏度?你是怎么看的?
2、试着把这三个温度写下来,并读一读。
3、思考:+20℃和-20℃表示的含义有什么不同?
2.小组交流。
交流内容:
1、说说你是怎么看温度计上的气温的?
2、南京、三亚、哈尔冰的最低气温分别是多少摄氏度?哪里的气温是零上,哪里的气温是零下?
3.你是怎么理解+20℃和-20℃的?
导学要点:
三亚的温度用正数表示,哈尔滨的温度用负数表示。
3.全班交流。
导学要点:
在读出刚才三个温度时,要注意看清什么?(出示温度计课件:闪烁0℃) 0℃,它正好是零上温度和零下温度的分界点。零上温度可以用正数表示,零下温度可用负数表示。
+20℃表示零上20℃,温度比0℃高,-20℃表示零下20℃,温度比0℃低。零上温度和零下温度是一组具有相反意义的量。
三、自学例2.(6分钟)
1、自学。
导学单:
1、用例1的办法表示出珠穆朗玛峰和吐鲁番盆地的高度。
2、读一读这两个数,他们分别表示比海平面高多少米或低多少米? 指导学生看懂例题中的示意图。
2、全班交流:
+8844.4米和-155米的实际含义。
海平面以上高度用正数,海平面以下用负数。海平面以上高度和以下高度是一组具有相反意义的量。
3、学生交流把数进行分类。
如果把这5个数分分类,可以怎样分?
导学要点:
像+20、+8844.4这样的数都是正数,像-20、-155这样的数都是负数(板书课题上的负字)。为了方便,“+”我们可以省略,但“-”一定要写。
0是正数和负数的分界点,因而0既不是正数,也不是负数。
4、讨论:你在生活中见过负数吗?它们的含义各是什么?
四、练习。(15分钟)
【基本练习】
1、第2页练一练。
点拨:
表示正数的圈里有0吗?表示负数的圈里呢?进一步明确正数、负数和0的关系。
2、练习一的第1、2题。
第1题:以0℃为标准,正数表示零上温度,负数表示零下温度。
第2题:继续强调,高于海平面的高度用正数表示,低于海平面的温度用负数表示。
3、 练习一的第3题。
写出5个正数和5个负数。
正、负数可以是些怎样的数?可以写小数和分数吗?
写正数和负数时要注意什么?
4、 练习一的第4题。
学生读一读表中的数。
在教材给出的图中涂一涂。
教师收集学生的不同画法,评讲时展示,纠正学生出现的错误。
图中的几个温度,哪些比0℃高,哪些比0℃低?-5℃与-10℃相比,哪个温度高一些?
5、创编练习。
电梯现在停在6楼,如果升到9楼记作+3,那么-2表示()。 ① 电梯下降到了2楼
②电梯下降了2楼
③电梯下降了4楼
④电梯上升到8楼
电梯是以几楼作为正负分界的?
五、课作。(6分钟)
完成《补充习题》第1页。
帮助学困生,收集典型错例,讲评时使用。
校对作业,分析典型错例,统计正确率,订正错误。全对的做“提高题”。 提高题。
甲地海拔高度是30米,乙地海拔高度是20米,丙地海拔高度是-10米,哪个地方最高,那个地方最低?最高的地方比最低的地方高多少米?
六、家作。
1、《课课练》第页。
2、上网查阅:了解负数的产生。
一、比较图形面积大小的方法:
1、数格法;
2、重叠法;
3、分割平移法;
4、公式计算面积法;
5、借助参照物比较法。
二、计算不规则图形面积的方法:
1、数格法;
2、分割法;
3、大面积减小面积法;
4、综合计算法
注:数格子时,先数完整的`格子,再数能拼接的格子,如果几个格子可以拼接成一个完整的格子,就可以算作一个整格;不能拼接的格子,如果接近半格,按半格算;如果只多一点点的,可以忽略不计;如果超过半格,接近一格的,按一格计算。
三、底和高
1、底和高是互相垂直的两条垂线段。(画高时,用虚线画高)
2、画垂线时用实线画。
四、面积公式
1、平行四边形面积=底×高(s平=ah)
底=平行四边形面积÷高(a=s平÷h)
高=平行四边形面积÷底(h=s平÷a)
2、三角形面积=底×高÷2(s三=ah÷2)
底=三角形面积×2÷高(a=s三×2÷h)
高=三角形面积×2÷底(h=s三×2÷a)
3、梯形面积=(上底+下底)×高÷2(s梯=(a+b)h÷2)
上底=梯形面积×2÷高-下底(a=s梯×2÷h-b)
下底=梯形面积×2÷高-上底(b=s梯×2÷h-a)
高=梯形面积×2÷(上底+下底)(h=s梯×2÷(a+b))
教学内容:
课本第52页。
教学目标:
1.掌握用计算器进行一些稍复杂的小数加、减法的计算方法,能正确进行计算,正确率达到90%以上。
2.体会使用计算器工具进行计算更简单,更快捷,初步学会使用计算器探索一些简单的数学规律。
3.体会数学学习的趣味性和挑战性。
教学重点:
用计算器正确计算稍复杂的小数加、减法的方法。
教学难点:
在计算器上暗处纯小数的简便方法,利用计算器探索规律。
教学准备:
课件
教学过程:
一、口算热身。(3分钟左右)
算一组一位小数、两位小数的加减法(不进位、不退位),共8题。
0.2+0.8= 0.76-0.36=
5+4.8= 6.9-0.5=
5.4+3.6= 7.72-6.52=
3.6+2.1= 9.1-1.1=
二、自学例3。(15分钟左右)
1.明确例3中的数学信息及所需要解决的问题。
出示:教材例3情境图。
导入:图中有哪些数学信息?围绕导学单进行自主学习。
2.自学。
导学单(时间:5分钟)
1.根据所求的问题列出算式,估算结果。
2.尝试用计算器计算。(你遇到什么问题?)
3.对照书本第52页例3的提示,自己的方法不同在哪里?怎样按键更简便?
4.模仿练习:用计算器计算下面各题。
4.75+12.63=
7.03-0.895=
0.268+3.87=
导学要点:
在计算器上输入小数,可以按照顺序依次按键。
用计算器再算一遍,进行检验。
3.小组交流。
交流内容
1.你是怎样在计算器上输入买铅笔的钱数的?
2.小数部分是0的小数还可以怎样按键?
4.全班交流。
分析学生在自学中出现的各种情况,给予适当点评。
三、练习。(15分钟左右)
(一)适应练习。
1.第52页试一试,用计算器计算并验算。
点拨:可以直接利用例3的得数来列式计算,也可以用100一次减去每种商品的金额。
2.第52页练一练,比一比,看谁算得又对又快。
同桌互相核对计算结果。
提醒:
要按照运算顺序连贯地进行计算。
(二)比较练习。
1.完成第53页练习九第1题。
每桌南边的学生用笔算或口算进行计算;
每桌北边的学生用计算器进行计算。
2.完成第53页练习九第2题。
用计算器进行计算并填表
示范:
用上月余额减去9月2日买米、油等的金额等于9月2日的余额。
点拨:
用上次余额减去本次用去的金额就等于本次余额。将两次收入相加等于合计
收入,7次支出相加等于合计支出。
(三)探索练习。
第53页练习九第3题。
用计算器计算上面三题
思考:这三题有什么规律吗?
用计算器完成第四题
(四)应用练习。
第53页练习九第四题
先列式,再用计算器进行计算。
(五)创编练习。
1.小马虎在计算1.86加上一个一位小数时,由于错误地把数的末尾对齐,结
果得到2.19,你能帮他算出正确答案吗?
2.用计算器计算,探索规律。
1122÷34=
111222÷334=
11112222÷3334=
111111222222÷333334=
四、课堂总结:
通过这节课的学习,你学到了什么知识?