圆的面积教案优秀8篇

在教学工作者开展教学活动前,就不得不需要编写教案,教案是备课向课堂教学转化的关节点。那么什么样的教案才是好的呢?以下是人见人爱的小编分享的圆的面积教案优秀8篇,您的肯定与分享是对小编最大的鼓励。

圆的面积教案 篇1

教学目标

1、使学生学会圆环面积的计算方法,以及圆形与矩形混合图形的相关计算方法。

2、学会利用已有的知识,运用数学思想方法,推导出圆环面积计算公式,有关于圆形与正方形应用的解答方法。

3、培养学生观察、分析、推理和概括的能力,发展学生的空间概念。

教学重难点

1、教学重点

会利用圆和其他已学的相关知识解决实际问题。

2、教学难点

圆与其他图形计算公式的混合使用。

教学工具

PPT卡片

教学过程

1、复习巩固上节知识,导入新课

2、新知探究

2、1圆环面积

一、问题引入

同学们知道光盘可以用来做什么吗?谁能来描述一下光盘的外观。

回答(略)。

今天我们就来做一做与光盘相关的数学问题。

二、圆环面积求解

例2、光盘的银色部分是一个圆环,内圆半径是50px,外圆半径是150px。圆环的面积是多少?

步骤:

师:求圆环面积需要先求什么?

生:内圆和外圆的面积

师:同学们可以自己做一做,分组交流一下自己的解法。

师:给出计算过程与结果:

三、知识应用

做一做第2题:

一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?

师:这是一道典型的圆环面积应用题。通过直径得到半径,代入圆环面积公式,很简单。

2、2圆与正方形

一、问题引入

师:同学们知道苏州的园林吧。大家有没有观察过园林建筑的窗户?它有很多很漂亮的设计,也有很多很常见的图形,比如五边形、六边形、八边形等等。其中外圆内方或者外方内圆是一种很常见的设计。

师:不仅是在园林中,事实上在中国的建筑和其他的设计中都经常能见到“外圆内方”和“外方内圆”,比如这座沈阳的方圆大厦、商标等等。下面我们来认识一下这种圆形与正方形结合起来构成的图形。

二、知识点

例3:图中的两个圆半径是1m,你能求出正方形和圆之间部分的面积吗?

步骤:

师:题目中都告诉了我们什么?

生:左图圆的半径=正方形的边长的一半=1m;右图圆的面积=正方形对角线的一半=1m

师:分别要求的是什么?

生:一个求正方形比圆多的面积,一个求圆比正方形多的面积。

师:应该怎么计算呢?

归纳总结

如果两个圆的半径都是r,结果又是怎样的呢?

当r=1时,与前面的结果完全一致。

四、知识应用

70页做一做:

下图是一面我国唐代外圆内方的铜镜。铜镜的直径是600px。外面的圆与内部的正方形之间的面积是多少?

师:同学们用我们刚刚学过的知识来解答一下这道题目吧。

解:铜镜的半径是300px

5、3随堂练习

若还有足够时间,课堂练习练习十五第5/6/7题。

(可以邀请同学板书解题过程)

6 小结

1、今天我们共同研究了什么?

今天我们在已知圆和正方形的面积公式的前提下,探索了圆环和“外圆内方”“外方内圆”图形的面积计算方法。这不是要求同学们记住这些推导出来的公式,而是希望同学们能过明白推导的方法,以后遇到类似的问题可以自己运用学过的知识来解决问题。

2、在日常生活中经常需要去求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化的吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子、车轮为什么要做成圆形的?大家需要多看多想!

《圆的面积》教学设计 篇2

揭示课题 师:前面我们认识了圆,学习了圆的周长,今天学习“圆的面积”。(教师板书,学生齐读)        师:看到这个课题后,你们会想到什么?这堂课要解决什么问题呀?        生:这堂课我们要学习圆的面积是怎样求出来的。        生:学生圆的面积公式。        师:你们知道圆的面积公式后,你们还想到什么问题?        生:圆的面积公式根据什么推导出来的。        师:对!刚才这几位同学跟老师想的一样。这堂课我们要解决两个问题。(出示小黑板上的板书,学生齐读。)1.  计算圆的面积公式是什么?2.  这个公式是怎能样推导出来的?        [评:这种揭示课题,设计新颖,启发学生自己提出教学的要求,这样既创设了问题情境,激发学生学习的兴趣,又使学生明确这堂课的教学目标 。]导入  新课         师:现在请大家回忆一下,我们以前学过哪些基本图形的面积计算。        生:我们已经学过长方形、正方形、平行四边形、三角形、梯形的面积计算。(教师随着学生的回答,逐一用投影机放出上述图形)。        师:上面这五种图形和今天学习的圆形有什么显著的区别?        生:上面五个图形是由线段围成的,下面的圆形是由曲线围成的。        师:因为圆是由曲线围成的,计算圆的面积就比较困难了。能不能直接用面积单位去量呢?        生;它是圆的,用面积单位直接量是有困难的。        师:究竟用什么方法,请大家阅读课本,在课本中寻找答案。(学生阅读课本后,纷纷举手要求回答)        生:我们可以用图形转化的方法,求圆的面积。        师:这个办法很好。那么把圆形转化成什么图形呢?        生:长方形。        师:以前我们学习的哪些图形也是转化成长方形,来推导出面积计算公式。      (用投影机放出几种图形的转化图解,边出示,边讨论)       [评:启发学生运用转化的数学思想解决问题。这种设计既复习了旧知识,又为学生新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。]进行新课         师:我们先用一个简单办法,猜想一下圆面积的公式。把一个圆4等分,用半径作边长画一个正方形。这个正方形的面积可用r2表示。在这个圆上可以画同样的4个正方形,它们的面积可以用4 r2 表示,你们观察一下这个圆的面积等不等于4 r2 ?        生:不等。        师:为什么?        生:因为,这个圆面积还要加上外面的4小块,才是4 r2 。        师:这个圆的面积比4 r2 小,等不等于3 r2 呢?        生:看上去比3 r2 又要大一些。        师:现在我们可以大致估计一下,这个圆面积要比3 r2 多一点,也就是r2 的3倍多一点。至于多多少,现在就来推导圆面积的计算公式。      (教师要求学生把预先准备好的一个圆分成16个相等的扇形,拼成一近似的长方形,学生可以一边看书,一边操作)        师:同学们观察一下,拼成的是什么图形?        生:近似于长方形。        师:说得很好,为什么说近似长方形,哪里不太像?        生:长边都是许多弧形组成,不是直线。        师:这里我们把圆分成16等分,还能分吗?        生:可以分成32等分、64等分、128等分……        师:究竟能分多少份呢?        生:无数份,可以永远分下去。        师:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长边就越接近直线,这个图形就越接近于长方形。师:把圆转化成长方形后,这个长方形的面积怎样计算?       (教师要求学生观察自己在课桌上拼出的图形,一边讨论,一边逐步写出推导的过程。)    长方形面积=长 ×宽  ↓ ↓      圆的面积=圆周长的一半×半径   ↓ = πr    ×  r   =πr2     师:现在可以回答前面提出的问题,圆面积是以半径为边长的正方形面积多少倍呢?        生: π倍。        生:约等于3.14倍。        师:刚才我们的猜想是正确的,圆面积的3 r2 多一点,现在推导出来的圆面积公式是πr2 ,也就是约等于3.14 r2 。    师:现在请同学们把圆面积公式的推导过程再完整地说一遍。      (学生回答略)    [评:打破了过去教师演示教具学生看的框框,而是要求每个学生动手操作,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆面积的公式。]巩固新课         采用抢答比赛的形式巩固新课。把学生分成4组,每组的底分为100分,答对1题加10分,答错1题扣10分。抢答题用投影片逐题出现:       (1)计算圆的面积必需要具备哪些条件?       (2)一个圆的直径与正方形边长相等,圆和正方形哪个面积大?       (3)半径是1米的圆,面积是3.14平方米,半径是2米的圆面积是多少平方米?       (4)圆能不能转化成三角形,来推导出求圆面积的公式?       (出示第4题前,教师宣布:第4题比较难,要先用学具摆,用相等的16个扇形先摆成三角形,然后观察,再写出推导过程。谁回答正确得30分。学生情绪高涨,都积极思考,抢着摆学具,抢着到黑板上写出推导的算式。)     三角开面积=  底 × 高 ÷ 2 = × 4r ÷ 2      = ×   4r ÷ 2     =2πr ×  r ÷ 2     =πr2       [评:用抢答形式巩固新课,设计新颖,激发学生兴趣,调动积极性,把课堂教学推向了高潮。特别第4题作为思考题,有助于发展学生的创造性思维。]课堂小结         师:这堂课大家学到了什么?有什么收获?        学生热烈发言,最后教师总结,解答了课一开始提出的两个问题。        叮铃铃,下课钤响了,这堂课在轻松愉快的气氛中结束。        [评:课堂小结时间虽短,但能使学生认识升华一步,同时做到前后呼应,使整堂课结构严谨,层次清楚。这堂课最大的特点,是能充分调动学生的主动性和积极性,学生既学得生动活泼,又能充分发展思维。]

圆的面积教案 篇3

教学目标:

1、通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2、激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

3、渗透转化的数学思想和极限思想。

教学重点:

正确计算圆的面积。

教学难点:

圆面积公式的推导。

教具准备:

多媒体课件二套,圆片。

一。情景导入

1、 师:(出示图)草地上长满了青草,一只羊被栓在草地的木桩上,请问:它能吃光全部青草吗?它最多能吃到哪个范围内的青草?请大家画出这只羊活动范围的示意图,两位同学到黑板上画。(一位画的是周长,另一位画的是面积。)(动画演示)

师:这个范围的大小指圆的周长还是面积?为什么?谁画的正确,(圆的面积)。

(板书:圆的面积)

2、师:什么是圆的面积?先说,再看书,学生读,(教师用课件演示)

师:看到这个课题后,你们会想到什么?这堂课要解决什么问题呀?

生:这堂课我们要学习圆的面积是怎样求出来的。

生:学生圆的面积公式。

师:你们知道圆的面积公式后,你们还想到什么问题?

生:圆的面积公式根据什么推导出来的。

师:对!刚才这几位同学跟老师想的一样。这堂课我们要解决两个问题。

(通过创设情景,激发学生的学习兴趣,形成良好的学习动机。通过学生提出问题,明确学习目标。)

二、动手操作,探索新知

1、 猜测(每项用课件出示)

师:我们先用一个简单办法,猜想一下圆面积的公式。把一个圆4等分,用半径作边长画一个正方形。这个正方形的面积可用r2表示。在这个圆上可以画同样的4个正方形,它们的面积可以用4 r2 表示,你们观察一下这个圆的面积等不等于4 r2 ?

生:不等。

师:为什么?

生:因为,这个圆面积还要加上外面的4小块,才是4 r2 。

师: 这个圆的面积比4 r2 小,我们再在圆内画一个最大的正方形,这个正方形的面积怎么求出来?

生:这个正方形是由四个同样大小的三角形组成,每个面积1/2r2,总面积2r2。

师:圆的面积和正方形比较谁的面积大?

生:圆的面积大

师:可以观察出圆的面积范围在2r2-4r2

(这里让学生了解解决问题时要善于观察、敢于猜想。渗透无限等数学思想,)

2、 回忆旧知,

师:圆能不能直接用面积单位支量呢?为什么?

生: 因为圆是由曲线围成的,用面积单位直接量是有困难的。

师:该怎么办呢?(教室沉默)

师: 请同学们看屏幕,(师播放课件)边看边回忆:以前我们研究过平行四边形、三角形和梯形面积的求法,那时我们是怎样处理的?(用投影机放出几种图形的转化图解,边出示,边讨论)

师:这些图形面积公式的'推导方法对我们研究圆的面积有什么启示呢?

生:我们可以用图形转化的方法,求圆的面积。(把未知的转化为已知的)

师:这个办法很好。那么把圆形转化成什么图形呢?

[评:启发学生运用转化的数学思想解决问题。这种设计既复习了旧知识,又为学生新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。]

3、动手操作

(1)师:请同学们动手剪拼一下,看到底能拼成什么图形。(学生动手操作。)

师:谁能向大家汇报一下,你把圆拼成了什么图形?(生答:拼成了。请把你拼好的图形放在实物投影上展示给大家看。一个同学用8等份的圆片摆成近似平行四边形,一个用不着16等份的圆片摆成近似长方形)

(2)师::请看大屏幕,16等份的和8等份谁拼成更接近长方形?

生:16等份拼成的图形就会越接近于长方形。如果分的份数越多,每一份就会越细,)

师:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长边就越接近直线,这个图形就越接近于长方形。课件演示

(3)看拼成的长方形与圆有什么联系?你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。 (教师要求学生观察自己在课桌上拼出的图形,一边讨论,一边逐步写出推导的过程。)

学生汇报讨论结果。生答师继续演示课件。

生答:能,因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

因为长方形的面积=长宽

所以圆的面积=周长的一半半径

S=r

S=r2

师:结合公式S=r2,说说圆的面积是怎样推导出来的?

(4)师:这个面积公式是不是正确,我们可以通过其它图形来验证一下。有的同学把圆拼成了三角形我们用三角形来验证一下,你能根据三角形计算公式推导圆的面积计算公式吗?(课件演示)

生答:三角形的底相当于圆周长的,高相当于圆半径的4倍。

因为 三角形的面积=底高2

所以 圆的面积=周长的半径的4倍

S=4r2

S=r2

师:我们用三角形也推出了圆的面积公式 S=r2 。同学们还有其它图形来验证吗?

(5)生:我们把圆转化成梯形来验证。(课件演示)

生:梯形的上底与下底的和相当于圆周长的一半,高相当于半径的2倍。

因为梯形的面积=(上底+下底)高2

所以圆的面积=周长的一半半径的2倍

S=2r2

S=r2 用梯形的面积

3、小结:刚才你们把圆转化成为哪些图形,分别推导出圆的面积计算公式?(S=r2)

我们根据拼成的近似平行四边形、长方形、三角形、梯形都推导出了同样的公式:S圆=r2。

唉!我们刚才猜的圆面积是多少?你们真了不起!与r2很接近啊!

圆的面积必需要具备哪些条件?

[评:打破了过去教师演示教具学生看的框框,而是要求每个学生动手操作,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆面积的公式。]

(三)课后巩固

1、 现在你可以求出小羊大约最多能吃到多少面积的青草吗?为什么?请你给它补个条件。

(照应了开头,又学练习了面积的计算。)

2、 根据下面条件求出圆的面积

r =5分米 d =3米

3同学们怎么计算树的横截面的面积,是不是一定把树木锯断?(同学们讨论答出测出周长后师再出题)树的周长是非曲直18.84平方米,求树的横截面的面积?

(用学到的知识来解决生活中的问题,培养学生的应用能力)

(四)师:这堂课大家学到了什么?有什么收获?

(学生热烈发言,最后教师总结,解答了课一开始提出的两个问题。)

[评:课堂小结时间虽短,但能使学生认识升华一步,同时做到前后呼应,使整堂课结构严谨,层次清楚。这堂课最大的特点,是能充分调动学生的主动性和积极性,学生既学得生动活泼,又能充分发展思维。]

《圆的面积》教学设计 篇4

学会反思方能成长,以下是关于五年级数学《圆的面积》教学反思,欢迎大家阅读参考!

《圆的面积》教学反思

《圆的面积》是小学数学教学中的一个难点,又是学习圆柱与圆锥的基础,圆面积公式的推导过程运用了“极限”的思想和方法,这对小学生来讲是深奥难懂的。教材首先提出了圆的面积概念,接着让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆转化成已学过的图形(主要是长方形)来计算面积,引导学生自主推导出圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂问题的策略。

学习此知识之前,学生已初步认识了圆,理解了面积的含义,并且掌握了长方形、正方形、平行四边形、三角形、梯形的面积计算公式的推导过程,因此学习圆的面积公式推导过程时只需要教师启发、点拨学生依然从转化的思想入手,将圆转化为已学过的图形进行计算,然后通过等量代换得到圆面积公式。因此,新课内容必须从贴近学生生活的情境出发,激发学生的探究欲望,降低内容的抽象性,引导学生用转化的方法推导出圆面积的计算公式。

本节课,我认为我主要有以下几个亮点:

一、重视自主探究,发挥学生主体性。

在教学“圆的面积”计算公式推导时,我先让学生回忆学过的平面图形面积的推导方法,引导学生进行知识迁移,能不能运用割补的方法把圆割补拼成学过的平行四边形、三角形等平面图形,来推导出圆的面积计算公式呢,然后留给学生充分的时间和空间,让学生小组合作动手、动脑剪一剪、拼一拼,再把圆转化成学过的平面图形。再引导学生交流、验证自己的推导想法,师生共同倾听并判断学生汇报圆的面积公式的推导过程,有效地体验从猜想——实践验证——分析——归纳总结的科学探究问题的方法。看看他们的推导方法是否科学、合理,使学生们经历操作、验证的学习过程。这样有序的学习,提高了学生的实践能力和创新意识。例如:想一想以前咱们学过了哪些图形的面积计算公式?(长方形、正方形、平行四边形、三角形、梯形)这些面积公式都是怎样推导出来的?(生边回答课件边演示平行四边形、三角形、梯形的面积公式推导过程)从这些面积公式推导过程中你得到了什么启发?(都先转化成长方形,可否将圆也转化成长方形呢?)怎么转化?(生讨论,看书等后回答:把圆分成若干等份,拼成长方形),你想分成多少等份?(16等份)多点行不行?(众说不一,同桌讨论后回答:行)为什么呢?(分的等份越多,拼成的图形就越接近长方形)如果越少呢?(拼成的图形就越不象长方形)如果分成两等份呢?(用两个半圆试拼)(那就拼不成长方形了)现在我们将这个圆分成16等份,请两个同学上台拼一拼,大家首先看圆周围的黑线表示圆的什么?(周长)这条红线呢?(半径)这两条线很顽皮,在拼的过程中要跟我们玩捉迷藏,一定要盯住它们各藏到哪儿了?(学生操作)他们先把两个半圆展开,然后犬牙交错地拼在一起,成了什么图形啦?(长方形)是精确的长方形吗?(不是,是近似的)为什么?(上下两条长边上有许多小包包)对,两条长边不是直的,是波浪形的,怎样才能使它接近一条直线呢?(把圆分的等份越多,就越接近直线)好,现在我们就将圆分成32等份拼一下,为了便于观察,我们用课件来演示。同样用黑线表示周长,红线表示半径。也学这两位同学这样拼起来,成了一个什么图形?(几乎是一个长方形了)这样一拼之后,什么变了?什么没变?(形状变了,面积没变)现在大家找一找,黑线和红线各藏到哪里去了?(黑线分成了两段,到了长方形的上下两边,红线到了长方形的右边)各成了长方形的什么呀?(表示圆周长的一半成了长方形的长,表示半径的红线成了长方形的宽)(老师对应地板书)长方形的面积等于长乘以宽,那么圆的面积等于什么呀?(学生互相合作,推导出圆面积公式)(老师对应板书并熟读公式)好,现在大家用学具拼一拼,看还能拼出什么学过的图形?(可以拼出近似三角形、平行四边形、梯形)真不错,拼成的 这些图形同样可以推导出圆面积的计算公式,这个问题我们留到数学活动课再去进一步探讨。

二、运用多媒体手段,激发学生学习兴趣。

在学生实践操作的基础上,我利用多媒体精确演示圆割补拼图的过程,让学生清楚地理解自己推导方法的科学性和准确性,极大地激发了学生们的学习兴趣,为学生今后圆锥,圆柱奠定了有力的基础。

三、练习坡度适当,由浅入深地掌握知识。

课上及时安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。

课后设想:

圆除了剪拼成近似的长方形外,还可以转化成近似的三角形、近似的梯形。如果让学生在这里再动手操作,对学生思维的拓展是有很大的好处,但一节课无法容纳这么多的内容,所以这一节课就选择了单纯让学生把圆转化成近似长方形来推导圆面积的公式。但回头想想,也可以把圆的面积分两课时来上,一课时是让学生操作,圆可以转化成什么图形?第二课时才深入地研究如何推导圆面积的公式,这样费时多些但对学生的能力开拓会更有好处。

圆的面积教案 篇5

教学内容:

圆的面积。

教学目标:

1、 通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2、 激发学生参与整个课堂教学活动的学习兴趣, 培养学生的分析、观察和概括能力,发展学生的空间观念。

3、 渗透转化的数学思想和极限思想。

教学重点:

正确计算圆的面积。

教学难点:

圆面积公式的推导。

学情分析:

本课是在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时要注意遵循学生的认识规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有的知识出发。

学法指导:

教学本课时,重点引导学生提出将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,并发展学生的空间观念。

教具准备:

多媒体课件,圆片。

学具准备:

把圆片分成十六等分,并按课本图所示,剪拼并贴成近似长方形。

教学设计

一、复习旧知,导入新课

1、 前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?(2πr)周长的一半怎样表示?(πr)

2、 课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)

3、件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积)谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。

提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)

这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)

二、动手操作,探索新知

1、 回忆平行四边形、三角形、梯形面积计算公式推导过程。

(1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?(学生回答,师用课件演示。)

(2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的图形来推导出它们的面积计算公式。)

(3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?那么同学们想一想,圆可能转化为什么平面图形来计算呢?

2、 推导圆面积的计算公式。

(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?

(2)学生小组讨论。

看拼成的长方形与圆有什么联系?

学生汇报讨论结果。

(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)

(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。

生边答师边演示课件。

生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

因为长方形的面积=长×宽

所以圆的面积=周长的一半×半径

S=πr × r S=πr2 师小结公式

S=πr2,让学生小组内说说圆的面积是怎样推导出来的?

(5)读公式并理解记忆。

(6)要求圆的面积必须知道什么?(半径)

3、 利用公式计算。

(1)用新的方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)

(2)出示例3,学生尝试练习,反馈评价。

提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?

(3)完成第95页做一做的第1题。

(4)看书质疑。

三、运用新知,解决问题

1、 求下面各圆的面积,只列式不计算。(CAI课件出示)

2、 测量一个圆形实物的直径,计算它的周长及面积。

3、 课件演示

用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的最大面积即最大圆面积是多少?)

四、全课小结

这节课你自己运用了什么方法,学到了哪些知识?

五、布置作业

1、 第97页的第3题和第4题。

2、 找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

测量物、直径(厘米)、半径(厘米)、面积(平方厘米)

板书设计:

圆的面积

长方形的面积= 长× 宽

圆的面积=周长的一半×半径

S=πr×r

S=πr2

圆的面积教案 篇6

【教学内容】

北师大版小学数学第十一册第一单元P16--18圆的面积

【教学目标】

1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。

3、在估一估和探究圆面积公式的活动中,体会化曲为直的思想,初步感受极限思想。

【教学重点】

能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。

【教具准备】

投影仪,CAI课件,等分好的圆形纸片。

【学具准备】

等分好的圆形纸片。

【教学设计】

【教学过程】

【教学过程说明】

一、 创设情境。提出问题

(投影出示P16中草坪喷水插图)

师:请同学们观察这幅插图,说说从图中你能发现数学知识吗?

学生观察并讨论,然后指名回答。

生1:我能发现喷水头转动一周所走过的地方刚好是一个圆形。

生2:对,这个圆形的半径就是喷头喷水的距离,也就是5米;周长也就是喷水所走过的路线;

生3:我补充一点,这个圆形的中心就是喷头所在的地方。

师:同学们说得很好。晴大家说说这个圆形的面积指的是哪部分呢?

生4:被喷到水的草坪大小就是这个圆形的面积。

师:说得很好,今天这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)

二、探究思考。解决问题

1、估计圆面积大小

师:请大家估计半径为5米的圆面积大约是多大?

(让同学们充分发挥自己感官,估计草坪面积大小)

2、用数方格的方法求圆面积大小

①投影出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。

②指明反馈估算结果,并说明估算方法及依据。

生1、我是根据圆里面的正方形来估计的,外面方格图面积为1010=100平方米,圆里面的正方形面积大约为50平方米,那么这个圆形的面积大约在50--100平方米之间;

生2:我是用数方格的方法来估计的。我把这个圆形平均分成4份,其中一份大约为20平方米,那么这个圆形的面积约有80平方米;

生3:还可以通过计算来得到圆的面积。圆形外面的正方形可以看作边长为2r的正方形,面积就是2r2r=4r2,而圆形里面的正方形可以看作由4个小三角形拼成的正方形,三角形的直角边长为r,则一个三角形的面积是rr2=1/2r2,;那么四个三角形的面积即是41/2r2=2r2,那么圆形面积大约为3r2,

师:同学们的估计很有道理,但是在实际生活中往往要有一个精确的结果,我们接下来就来讨论一个能计算圆面积的方法。

三、探索规律

1、由旧知引入新知

师:大家还记得我们以前学习的平行四边形、三角形、梯形面积分别是由哪些图形的面积来的吗?

(学生回答,教师订正。

那么圆形的面积可由什么图形面积得来呢。

2、探索圆面积公式

师:拿出我们剪好的图形拼一拼,看看能成为一个什么图形?并考虑你拼成的图形与原来的圆形有什么关系?(同学们开始操作,教师巡视)

生:我拼成的图形接近一个平行四边形,平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。

师:说得很好,大家看看自己拼成的图形与刚才这个同学说的是否一样呢?

生:我拼成的图形更接近于长方形,这个长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。

(学生在说的同时教师注意板书)

师:现在请大家来观察一下刚才两个同学拼成的图形,哪个更接近长方形呢?

生:等分为32份的更接近长方形。

师:大家想象一下,如果把一个圆等分的份数越多,拼成的图形越接近什么图形呢?

生:等分的份数越多,就越接近长方形。

师:下面请大家观察黑板上的板书,你能否由平行四边形或者长方形的面积公式得到圆形面积公式呢?并说出你的理由。(生说,教师板书)

生1:因为拼成的平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。而平行四边形面积=底高,那么圆形面积公式=圆周长的1/2半径即可。

生2:因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长宽,那么那么圆形面积=圆周长的1/2半径即可。

师:用字母怎么表示圆面积公式呢?

生:S=RR

生:还可以写作S=R2

师:这说明求圆的面积只需要知道半径即可,那我只告诉你们圆的直径又如何求出圆的面积呢,请大家自己把这个公式写出来。教师板书。

3、应用圆面积公式

师:现在请大家用圆面积公式计算喷水头转动一周可以浇灌多大面积的农田。

(学生独立解答,知名回答)

四、应用圆面积公式解决实际问题

1、P18,NO1

学生独立解答,集体订正的时候要求学生说出每一步计算过程和依据。

2、P18,NO2

让学生理解题意后,鼓励学生在头脑中想象,猜一猜结果,然后在地上画一个半径是1米的圆,让学生看看,并试着站一站。在估计半径是10米的圆大约有几个教室大的时候,可以让学生先估计再算一算。

五、小结

师:谁能用自己的话说说圆面积的推导过程。

圆的面积教案 篇7

教学目的:

1、通过教学使学生建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

2、能正确地应用圆面积计算公式进行圆面积的计算,并能解答有关圆的实际问题。

教学重点:

理解和掌握圆面积的计算公式的推导过程

教学难点:

圆面积计算公式的推导

教学过程:

一 、创设情境,提出问题

( 课件演示)用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题)

生:1羊走一圈有多长?2羊最多能吃到多少草?3羊能吃到草的最大面积是多少?

二、引导探究,构建模型

A:启发猜想

师:羊吃到草的最大面积最大是圆形:

1、这个圆的面积有多大猜猜看;

2、试想圆的面积和哪些条件有关?

3、怎样推导圆的面积公式?(生试说)

B:分组实验,发现模型

学生分小组将平均分成16等分、32等分的圆放在桌上自由拼摆,拼成以前学过的平面图形摆好后想一想:

1、你摆的是什么图形?

2、你摆的图形与圆的面积有什么关系?

3、图形各部分相当于圆的什么?

4、你如何推导出圆的面积?

请小组长汇报拼摆的情况,鼓励学生拼摆成不同的平面图形(师课件展示动画效果)可以拼摆成长方形、梯形、三角形、平行四边形四种情况。

三、 应用知识,拓展思维

1师:要求圆的面积必须知道什么?

2 运用公式计算面积

A完成羊吃草的面积

B完成课后“做一做”

C一个圆的直径是10厘米,它的面积是多少平方厘米?

D找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

测量物直径(厘米)半径(厘米)面积(平方厘米)

3应用知识解决身边的实际问题(知识应用)

下面是一个体育场的平面图,请你算一算跑道的周长是多少米?长方形体育场的占地面积是多少平方米?学校要请师傅给体育场铺草皮,已知每平方米的草皮是2.4元,学校一共要付多少钱才能完成?

四 归纳总结,完善认知

今天学了什么,这些知识我们是用什么方法学来的,你懂得了什么?

圆的面积教案 篇8

教学目标:

1.使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

2.使学生进一步体会转化方法的价值,培养运用已学知识解决新问题的能力,发展空间观念和初步的推理能力。

3体会数学来自于生活实际的需要,感受数学与生活的联系,进一步产生对数学的好奇心和兴趣。

教学重点:

探索并掌握圆的面积公式,能正确计算圆的面积。

教学难点:

理解圆的面积公式的推导过程。

教学准备:

圆的面积公式的推导图。

一、回顾旧知,引入新知

1.师:四年级时,我们学习了求长方形和正方形的面积的方法,谁来说一说它们的面积的计算方法。

学生回答,教师予以肯定。

2.提问:圆的周长怎么计算?已知圆的周长,如何计算它的直径或半径?

3.引入:我们已经研究了圆的周长和直径、半径的计算方法,今天这节课我们来研究圆的面积是如何计算的。

(板书:圆的面积)

设计意图 通过复习,促进学生对周长和已知周长求直径或半径的理解,唤起学生求长方形和正方形面积的经验,为新课的学习做好准备。

二、合作交流,探究新知

1.教学例7。

(l)初步猜想:圆的面积可能与什么有关?说说你猜想的依据。

(2)圆的面积和半径或直径究竟有着怎样的关系呢?我们可以做一个实验。

(3)出示例7第一幅图。思考:图中正方形的边长与圆的半径有什么关系?图中正方形的面积和圆的半径有什么关系?

(4)学生独立完成填空。

(5)猜测:圆的面积大约是正方形面积的几倍?

学生回笞后,明确:圆的面积小于正方形面积的4倍,有可能是3倍多一些。

(6)出示例7后两幅图,按照同样的方法进行计算并填表。

正方形的面积

圆的半径

圆的面积

圆面积大约是正方形面积的几倍

(精确到十分位)

2.交流归纳:观察上面的表格,你有什么发现?

通过交流,明确

一键复制全文保存为WORD
相关文章